Теорема Остроградского-Гаусса

ОПРЕДЕЛЕНИЕ ЭКВИПОТЕНЦИАЛЬНЫХ ПОВЕРХНОСТЕЙ

И ЛИНИЙ НАПРЯЖЕННОСТИ ЭЛЕКТРОСТАТИЧЕСКОГО

ПОЛЯ

Цель работы: исследование электрических полей, создаваемых несколькими зарядами.

Оборудование: установка для исследования электростатических полей, источник питания 0¸7В, токопроводящая бумага, поверх которой прикреплена декоративная панель с многочисленными отверстиями, мультиметр в режиме вольтметра.

 

Краткая теория

Система тел или частиц называется электрически изолированной системой, если между ней и внешними телами нет обмена электрическими зарядами.

Закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе

.

Удаленные друг от друга точечные электрические заряды взаимодействуют по закону Кулона с силой:

 

, (1.1)

 

где k = 9 × 109 - коэффициент пропорциональности, который можно определить по формуле , e0 - электрическая постоянная, равная 8,85 × 10-12 , q1 и q2 - точечные заряды, находящиеся на расстоянии r друг от друга.

Точечным зарядом q называется наэлектризованное тело, размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми оно взаимодействует, e - диэлектрическая проницаемость среды, равная отношению силы взаимодействия между зарядами в отсутствии среды F0 и при ее наличии F.

 

. (1.2)

 

Каким же образом осуществляется это взаимодействие при отсутствии вещества между зарядами? Взаимодействие между зарядами происходит через посредство электрического поля. Электрическое поле, образованное системой неподвижных зарядов называется электростатическим.

Если рассмотреть заряд q как «источник» электрического поля, в которое на расстоянии помещен пробный заряд , то на него будет действовать сила:

 

, (1.3)

 

где - радиус вектор, проведенный от заряда к заряду .

Отсюда видно, что сила зависит от величины пробного заряда q’: F~ q’. С другой стороны, не зависит от q’, а зависит от величины заряда q, свойств среды e и положения в пространстве той точки, в которой изучается поле - значения радиус-вектора . Эту величину можно принять для количественной характеристики электрического поля:

 

. (1.4)

 

Вектор носит название вектора напряженности электрического поля и служит его силовой характеристикой. В СИ измеряется в В/м.

Вектор напряженности электрического поля системы зарядов равен геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности.

 

.

 

Это утверждение называется принципом суперпозиции (наложения) электрических полей.

Графически электрическое поле можно показать с помощью силовых линий. Эти линии проводят так, чтобы касательные к ним в каждой точке пространства совпадали по направлению с вектором в той же самой точке (рис.1.1).

Условно принимают, что число линий, проходящих через единичную площадку, ориентированную перпендикулярно этим линиям, должно равняться численной величине Е в данной области поля. Свойство линий напряженности начинаться или заканчиваться только на электрических зарядах или уходить в бесконечность, сохраняется и для полей, создаваемых любой системой электрических зарядов. В качестве примера использования принципа суперпозиции электрических полей рассмотрим поле электрического диполя. Диполем называется совокупность двух одинаковых по абсолютной величине разноименных зарядов + q и - q, расположенных на расстоянии l друг от друга, которое мало по сравнению с расстоянием r от центра диполя О до точки М, в которой определяется напряженность (рис.1.2.).

Соединим точку наблюдения М с обоими зарядами радиус-векторами и , проведенными из тех точек, в которых находятся эти заряды. Тогда, вектор напряженности создаваемый зарядом - q в точке М, будет направлен против радиус-вектора , а будет направлен по . Векторы и определяются по формуле (1.4), а полный вектор напряженности электрического поля в точке М равен их геометрической сумме:

 

. (1.5)

 

Рис. 1.2. Диполь.

Из треугольника ОLM на рисунке видно, что вектор является геометрической суммой вектора и вектора , где - единичный вектор, направленный вдоль прямой, соединяющей заряды и - . Отсюда и аналогично . (1.6) Опуская из точки L перпендикуляр на радиус вектор , мы видим, что величина

 

r = ON + NM = + NM.

Используя условие l << r, мы можем считать в прямоугольном треугольнике LNM катет NM равным гипотенузе ; тогда

 

и . (1.7)

 

Подставляя (1.7) в (1.5), получаем:

 

. (1.8)

 

Раскрывая скобки в знаменателях по формуле бинома Ньютона и отбрасывая члены, содержащие малые порядки l2 и l3, имеем:

 

.

 

Воспользуемся правилом приближенного деления, согласно которому при относительной ошибке d <<1 c точностью до членов второго порядка

 

.

 

Тогда

. (1.9)

Подставляя (1.9) в (1.8) и раскрывая скобки, получим:

. (1.10)

 

Отсюда видно, что напряженность поля диполя определяется не в отдельности величиной зарядов q и расстоянием между ними l, а произведением

p = ql, (1.11)

 

которое называется дипольным моментом. Поскольку ось диполя ориентирована в пространстве, то дипольный момент является вектором . Он направлен вдоль оси диполя от отрицательного заряда к положительному, т.е. по единичному вектору . Следовательно,

 

. (1.12)

 

Подставляя (1.11) и (1.12) в (1.10), получаем

 

. (1.13)

 

Значит, напряженность электрического поля диполя Е прямо пропорциональна величине дипольного момента p и в любом направлении (для любых q) убывает с ростом r как 1/r3.

 

Теорема Остроградского-Гаусса

Потоком вектора напряженности электрического поля сквозь малый участок поверхности, проведенной в поле, называется величина

 

dN = E dS cos ()= . (1.17)

 

где - вектор напряженности электрического поля в точках малого участка поверхности площадью dS, - единичный вектор, нормальный к площадке dS, а вектор .

 

dN = EndS = EdS^. (1.18)

 

Поток напряженности N сквозь любую поверхность S равен алгебраической сумме потоков напряженности сквозь все малые участки этой поверхности:

 

. (1.19)

 

При этом все векторы нормалей к малым площадкам dS нужно направлять в одну и ту же сторону относительно поверхности S.

Рассмотрим электростатическое поле системы точечных зарядов q1, q2,..., qn. Согласно принципу суперпозиции полей:

 

, (1.20)

 

т.е. искомый поток N равен алгебраической сумме потоков через ту же замкнутую поверхность S напряженности полей каждого из зарядов системы. Поток напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен отношению алгебраической сумме электрических зарядов, охватываемых этой поверхностью, к электрической постоянной e0.

 

. (1.21)

 

Рассмотрим несколько примеров использования теоремы Остроградского-Гаусса.

Точечный заряд

 

Рассмотрим точечный заряд, помещенный в центре сферы радиусом R. По теореме Остроградского-Гаусса dN = EdS = , учитывая, что Sсферы = 4pR2, то

 

. (1.22)

 

Бесконечно заряженная плоскость

 

Рассмотрим равномерно заряженную бесконечную плоскость с постоянной поверхностной плотностью заряда s:

- это заряд, распределенный по площади S.

Вектор электрического поля будет направлен нормально от плоскости, если s>0.

Для определения модуля вектора напряженности, создаваемого пластиной, применим теорему Гаусса к замкнутой цилиндрической поверхности (рис. 1.4). Ось цилиндра перпендикулярна заряженной плоскости, и последняя делит высоту цилиндра пополам. Оба основания параллельны заряженной плоскости и имеют одинаковую площадь S.

Поток вектора напряженности через цилиндрическую поверхность равен:

 

(1.23)

 

На боковой поверхности вектор E параллелен поверхности и cosα = 0. На торцах цилиндра вектор E перпендикулярен поверхности и cosα = 1, а величина E одинакова на обоих основаниях; следовательно,

(1.24)

 

Проведенная цилиндрическая поверхность вырезает из плоскости такую же площадку S c полным зарядом:

 

(1.25)

Подставляя (1.24) и (1.25) в левую и правую части (1.21) получаем:

откуда

 

 

(1.26)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: