Принцип действия и конструкция машин постоянного тока

Два неподвижных полюса N и S создают магнитный поток. В пространстве между полюсами помещается стальной сердечник в виде циліндра. На наружной поверхности цилиндра помещен виток медной проволоки abcd, изолированный от сердечника. Концы его присоединены к двум кольцам, на которые наложены щетки 1 и 2. К щеткам подключена нагрузка zн. Если вращать сердечник с частотой n в указанном на рисунке направлении, то виток abcd, вращаясь, будет пересекать магнитные силовые линии, на концах его будет наводиться ЭДС. И если к витку подключена нагрузка zн, то потечет и ток. Направление тока определится правилом "правой руки". Из рисунка видно, что направление тока будет от точек b к а и от d к с. Соответственно во внешней цепи ток течет от щетки 1 к щетке 2. Щетку 1, от которой отводится ток во внешнюю цепь, обозначим (+), а щетку 2, через которую ток возвращается в машину обозначим (-). При повороте витка на 180° проводники аb и cd меняются местами, изменяется знак потенциала на щетках 1 и 2 и изменится на обратное направление ток во внешней цепи. Таким образом, во внешней цепи течет переменный синусоидальный ток. Чтобы выпрямить переменный ток, необходимо в машине применить коллектор В простейшем случае это два полукольца и к ним припаиваются концы витков abcd. Полукольца изолирования друг от друга и от вала. При вращении в витке abcd в нем попрежнему возникает переменная ЭДС, но под каждой щеткой будет ЭДС только одного знака: верхняя щетка будет иметь всегда (+), а нижняя - всегда (-). Кривая тока во внешней цепи будет иметь другую форму. Из графика видно, что нижняя полуволна заменена верхней. Если применить не один виток, а два и присоединить их концы к коллекторным пластинам, которых теперь 4, то кривая выпрямленного тока будет иной.
При наличии нескольких витков кривая выпрямленного напряжения будет более сглаженной. Машина постоянного тока конструктивно состоит из неподвижной части - статора и вращающейся - ротора. Статор имеет станину, на внутренней поверхности которой крепятся магнитные полюсы с обмотками. Ротор машины чаще называется якорем. Он состоит из вала, цилиндрического сердечника, обмотки и колектора. Магнитные полюсы и сердечник якоря набираются из отдельных листов электротехнической стали. Листы покрываются изолированной бумагой или лаком для уменьшения потерь на гистерезис и вихревые токи. Коллектор набирают из медных пластин, имеющих сложную форму. Пластины друг от друга изолированы специальной теплостойкой прокладкой. Такая же изоляция имеется между коллектором и валом двигателя. Набор коллекторных пластин образует, цилиндр-коллектор. К внешней поверхности коллектора прилегают токосъемные щетки, которые выполнены из спрессованного медного и угольного порошка. Щетка помещается в металлическую обойму и прижимается к коллектору пружинами.

19. обмотки возбуждения и обмотки якоря. Первая служит для создания в машине магнитного поля, т. е. для возбуждения, а посредством второй происходит преобразование энергии. Исключение составляют магнитоэлектрические машины постоянного тока, в которых имеется лишь одна (якорная) обмотка, так как магнитное поле (возбуждение) в этих машинах создается постоянными магнитами. Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору. Элементом обмотки якоря является секция, которая содержит один или несколько витков и присоединяется к двум коллекторным пластинам. Секция состоит из активных сторон, заложенных в пазы сердечника якоря, и лобовых частей, соединяющих эти стороны. При вращении якоря в каждой из активных сторон индуктируется э. д. с. В лобовых же частях секции э. д. с. не индуктируется.

20. Магнитный поток в электрических машинах возникает из-за наличия тока в обмотках: в машинах постоянного тока и синхронных по обмоткам возбуждения проходит постоянный ток, по обмоткам якоря — переменный; в асинхронных машинах и трансформаторах по всем обмоткам проходит переменный ток. В малых машинах постоянного тока и синхронных иногда применяются постоянные магниты. Для улучшения магнитной связи между обмотками и увеличения магнитного потока магнитная система машин выполняется из ферромагнитных материалов, обладающих хорошей магнитной проницаемостью. В большинстве случаев применяется электротехническая сталь, легированная кремнием (1...5,0%) и другими присадками, уменьшающими потери в переменном магнитном поле. Иногда применяется литая сталь, чугун, а иногда, в очень малых машинах, пермаллой и феррит. Основной магнитный поток замыкается по стали и через воздушный зазор между статором и ротором; потоки рассеяния замыкаются в междуполюсном пространстве и вокруг проводников, лежащих в пазах.

Цель расчета магнитной системыустановление связи между магнитным потоком и токами в обмотках машины. Кроме того, представляет интерес плотность магнитного потока — магнитная


 


21. Реакция якоря машины постоянного тока — воздействие магнитного поля якоря на магнитное поле машины. В результате реакции якоря магнитное поле машины искажается, что ведет к искрению под щетками. Кроме того, под действием реакции якоря магнитный поток машины при насыщенной магнитной цепи уменьшается, что приводит к уменьшению ЭДС по сравнению с ее значением при холостом ходе.

Для исключения этого явления делают некоторые изменения в конструкции машины, но действенной мерой является применение компенсационной обмотки, которая располагается в пазах главных полюсов и включается последовательно в цепь якоря таким образом, чтобы ее намагничивающая сила была направлена встречно с намагничивающей силой якоря и компенсировала ее действие. Компенсационная обмотка применяется в машинах средней и большой мощности.

22.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения. Схемы двигателей и генераторов с данным видом возбуждения одинаковы.

23.

Каждая машина постоянного тока имеет одну или несколько пар главных полюсов, расположенных по окружности якоря строго симметрично и поочередно: северный – южный – северный и т. д. Сердечник главного полюса набирают из листовой электротехнической стали и крепят к станине при помощи болтов. Шихтовка сердечника уменьшает потери в стали от вихревых токов, которые возникают в сердечнике из-за пульсации магнитного тока, обусловленных зубчатостью якоря. Эти потери могут стать очень большими, так как сталь сердечника обычно насыщена.
На каждый главный полюс надеты одна или несколько катушек, предназначенных для создания магнитного потока машины или для других целей. Обмотка параллельного возбуждения, создающая, как правило, основной магнитный поток, выполнена проводом малого сечения. Обычно катушки этой обмотки имеют самые большие размеры. Обмотка последовательного возбуждения служит чаще для компенсации размагничивающего действия реакции якоря, то есть является вспомогательной обмоткой, поэтому катушки ее невелики по размерам. Однако они выполнены из провода большого сечения, так как по ним проходит ток, равный току обмотки якоря.
На главные полюсы электродвигателей постоянного тока могут быть надеты катушки пусковой обмотки, которые, с одной стороны, ограничивают пусковой ток, а с другой – увеличивают магнитный поток машины на период пуска.
Добавочные полюсы выполняют из целого куска стали. Это обусловлено тем, что сталь добавочных полюсов при работе машины не насыщена, а воздушный зазор под ним больше, чем под главными, поэтому потери в стали от вихревых токов невелики. Добавочные полюсы устанавливают в промежутках между главными. Число их обычно равно числу главных полюсов, однако двухполюсные машины небольшой мощности могут быть выполнены и с одним добавочным полюсом. Порядок чередования полярности добавочных полюсов будет рассмотрен ниже.
Рассматривая поперечное сечение машины, можно определить две ее оси. Линия, проходящая через центр вращения и по осям каждой пары главных полюсов, называется продольной осью машины. Линия, проходящая через центр вращения и по осям каждой пары добавочных полюсов, то есть по линиям геометрических нейтрале, называется поперечной осью, или нейтральной. Таким образом, каждой паре полюсов машины соответствует одна продольная и одна поперечная оси.
При изучении станины, являющейся одним из участков магнитной цепи машины, следует обратить внимание на способ крепления к ней полюсов, подшипниковых щитов, а также лап, выводной коробки, рыма и других дета-лей.

 

 


 


24.

Для уяснения особенностей работы электрической машины введем понятия о геометрической и физической нейтралях. Геометрическая нейтраль - это прямая, проходящая через центр якоря строго между главными полюсами. Физическая нейтраль - это прямая проходящая через центр якоря перпендикулярно результирующему магнитному потоку.

25.

Компенсационная обмотка – зеркальное отображение якорной обмотки. Компенсационная обмотка позволяет дополнительно улучшить распределение магнитного потока в электрической машине. Так, из рис. 137 легко видеть, что в результате действия реакции якоря магнитный поток главных полюсов становится неравномерным — с одной стороны полюса он усиливается, а с другой — ослабляется. Это приводит к неравномерной нагрузке якорной обмотки, часть витков окажется перегруженной, ухудшаются условия работы щеток. С помощью компенсационной обмотки, расположенной на главных полюсах, устраняется искажение магнитного потока непосредственно под главными полюсами. Однако одновременное применение добавочных полюсов и компенсационной обмотки значительно усложняет конструкцию электрических машин. Если удается осуществить удовлетворительную работу электрической машины посредством применения добавочных полюсов, то компенсационную обмотку стараются не применять. Компенсационные обмотки нашли практическое применение лишь в мощных электрических машинах.

26.

Компенсационная обмотка

 

Ее устанавливают на машинах мощностью более 150 КВт для улучшения коммутации. Она равномерно распределяется в полюсных наконечниках главных полюсов. Компенсационную обмотку включают последовательно с обмоткой якоря. Направление токов в ней должно быть противоположно токам обмотки якоря.

27.

 

28.

Двигатели постоянного тока получили широкое распространение и часто являются незаменимыми благодаря ценному свойству - возможности плавно и экономично регулировать частоту вращения в широких пределах. Частоту вращения регулируют путем изменения напряжения сети в том случае, когда источником электрической энергии двигателя является какой-либо генератор. Для регулирования частоты вращения двигателя изменением сопротивления цепи якоря используют регулировочный реостат, включенный последовательно с якорем. В отличие от пускового регулировочный реостат должен быть рассчитан на длительное прохождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается кпд двигателя. Регулируют частоту вращения якоря двигателя изменением магнитного потока, который зависит от тока в обмотке возбуждения. В двигателях параллельного и смешанного возбуждения для изменения тока включают регулировочный реостат, а в двигателях последовательного возбуждения для этой цели шунтируют обмотку возбуждения каким-либо регулируемым сопротивлением. Последний способ регулирования частоты практически не создает дополнительных потерь и экономичен.

Направление вращения якоря двигателя зависит от полярности полюсов и от направления тока в проводниках обмотки якоря. Таким образом, для реверсирования двигателя, т. е. для изменения направления вращения якоря, нужно либо изменить полярность полюсов, переключив обмотку возбуждения, либо изменить направление тока в обмотке якоря.

Обмотка возбуждения обладает значительной индуктивностью, и переключение ее нежелательно. Поэтому реверсирование двигателей постоянного тока обычно заключается в переключении обмотки якоря.

 


 


29.

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из трех составляющих.
Первой составляющей являются потери в стали Рст на гистерезис и вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На ее перемагничивание затрачивается мощность, называемая потерями на гистерезис.

Одновременно при вращении якоря в магнитном поле в сердечнике его индуктируются вихревые токи. Потери на гистерезис и вихревые токи, называемые потерями в стали, обращаются в тепло и нагревают сердечник якоря.
Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря.

Магнитная индукция определяет эдс машины или, иначе, напряжение, а частота перемагничивания зависит от частоты вращения якоря. Поэтому при работе машины постоянного тока в режиме генератора или двигателя потери в стали будут постоянными, не зависящими от нагрузки, если напряжение на зажимах якоря и частота его вращения постоянны.

Ко второй составляющей относятся потери энергии на нагревание проводов обмоток возбуждения и якоря проходящими по ним токами, называемые потерями в меди, - Робм.
Потери в обмотке якоря и в щеточных контактах зависят от тока в якоре, т. е. являются переменными - меняются при изменениях нагрузки.

Третья составляющая - механические потери Рмех, представляющие собой потери энергии на трение в подшипниках, трение вращающихся частей о воздух и щеток о коллектор. Эти потери зависят от частоты вращения якоря машины. Поэтому механические потери также постоянны, не зависят от

30.

Трансформатор представляет собой статический электромагнитный аппарат с двумя (или больше) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Основными частями трансформатора являются сердечник и обмотки. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного — понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие — для ее распределения между потребителями.

Силовые трансформаторы преобразуют переменный ток одного напряжения в переменный ток другого напряжения для питания электроэнергией потребителей.

Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях.

Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.

 

 


нагрузки.


 

 

31.

Работа электрического трансформатора основана на взаимной индукции. Если одну из действующих обмоток силового трансформатора подключить к электрическому источнику переменного напряжения, то по этой рабочей обмотке потечет ток, что создаст в стальном магнитопроводе переменный электромагнитный поток. Данный электромагнитный поток, связанный двумя обмотками будет индуктировать в обмотках электродвижущую силу. Поскольку в общем случае рабочие обмотки могут содержать различное количество витков, то величина индуктируемых в них напряжений будут различны. В той обмотке, которая имеет большее количество витков, напряжение будет больше, чем в рабочей обмотке, с меньшим количество витков.

Возникающая в первичной рабочей обмотке электродвижущая сила примерно приравнивается к приложенному электрическому напряжению и будет практически полностью его балансировать. К вторичной рабочей обмотке трансформатора подсоединяется различные нагрузки и потребители электрической энергии. Они будут являться электрической нагрузкой для силового трансформатора. При включении нагрузки в данной рабочей обмотке под воздействием наведённой ЭДС появляется ток, а на ее клеммных выводах появляется напряжение, что в свою очередь будет отличаться от тока и напряжения первичной рабочей обмотки.

То есть, в электрическом трансформаторе совершается изменение определённых параметров: подводимая электроэнергия к первичной рабочей обмотке из электрической сети с напряжением и током превращается в электроэнергию с иным напряжением и током. Следует учесть, что трансформатор нельзя подключать в электрическую сеть постоянного тока, поскольку при включении электромагнитный поток в нем не будет изменяться во времени, и не будет индуктировать электродвижущую силу в рабочих обмотках. Результатом этого может быть чрезмерный перегрев первичной рабочей обмотки и последующее её перегорание.

 

32.

Магнитопровод. Магнитопровод выполняет две функции:

· образует магнитную цепь, по которой замыкается поток Ф;

· является основой для крепления обмоток.

Магнитопровод состоит из тонких (обычно толщиной 0,5 мм) стальных пластин, покрытых с двух сторон изолирующим лаком. Такая конструкция обеспечивает ослабление вихревых токов, наводимых в магнитопроводе переменным магнитным потоком, и следовательно, снижение потерь энергии в трансформаторе.

33.

Первичная обмотка трансформатора подключается на синусоидальное напряжение, а вторичная обмотка разомкнута. Измеряются первичные напряжения Uo = Uw, ток /0 = 1г и мощность Ро = Pi, а также вторичное напряжение Uw.

34.

По данным опыта короткого замыкания определяется напряжение короткого замыкания uк%, его активная uа% и реактивная uх% составляющие, потери на нагревание обмоток трансформатора Ро6м при номинальной нагрузке и активное, реактивное и полное сопротивления трансформатора при коротком замыкании RK, XK и ZK. Потери в обмотках измеряются ваттметром.

35.

Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет. Зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость. Особенно эффективен автотрансформатор в случаях, когда необходимо получить вторичное напряжение, не сильно отличающееся от первичного.


 

 

36.

Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.

Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.

Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.

37.

Трансформаторы тока применяются в различных измерительных устройствах и предназначены для приведения электрического тока к величинам, удобным для измерения. Это позволяет существенно расширить пределы измерения таких приборов.

Так же они применяются в устройствах защиты. Если требуется одновременно проводить измерения и подключить защитные устройства, трансформаторы производят с двумя и более группами вторичных обмоток. Большинство таких устройств расчитаны на напряжение 600 В, поскольку именно оно наиболее часто встречается на трансформаторных подстанциях.

38.

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.Трансформаторы напряжения широко применяются в электроустановках высокого напряжения, от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.Измерительный трансформатор напряжения по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток.

39.

Импульсный трансформатор — трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

40.

Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

41.

Дроссель электрический - катушка индуктивности, которую включают в электрическую цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения сигналов различной частоты.


 


 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: