double arrow

ТЕМА XI. ЭЛЕКТРОХИМИЯ И ИНЖЕНЕРНАЯ ДЕЯТЕЛЬНОСТЬ

Окружающий мир разнообразный и загадочный. Вся природа, весь мир объективно существует вне и независимо от сознания человека. Мир материален; все существующее представляет собой различные виды материи, которая всегда находится в состоянии непрерывного движения, изменения, развития. Движение, как постоянное изменение, присуще материи в целом и каждой мельчайшей ее частице.

Формы движения материи разнообразны. Нагревание и охлаждение тел, излучение света, электрический ток, химические превращения, жизненные процессы – все это различные формы движения материи. Одни формы движения материи могут переходить в другие. Так, механическое движение переходит в тепловое, тепловое в химическое, химическое в электрическое и т.д. Эти переходы свидетельствуют о единстве и непрерывной связи качественно различных форм движения. При этом соблюдается основной закон природы – закон вечности материи и ее движения. Этот закон распространяется на все виды материи и все формы ее движения. Ни один вид материи, ни одна форма движения не могут быть получены из ничего и превращены в ничто. Это подтверждено многовековым опытом науки.

Отдельные формы движения материи изучаются различными науками: физикой, химией, биологией и другими.

Каждый отдельный вид материи, обладающий при данных условиях определенными физическими свойствами (массой, объемом, агрегатным состоянием и т.д.), например вода, называют веществом. Одна из древнейших, важнейших и обширных наук о веществах – это химия.

Впервые определение химии как науки дал М.В.Ломоносов: «Химическая наука рассматривает свойства и изменения тел..., должна исследовать состав тел», она «объясняет причину того, что с веществами при химических превращениях происходит».

Согласно сегодняшним представлениям химия – это наука о превращениях веществ. Она изучает состав и строение веществ, зависимость свойств веществ от их состава и строения, условия и пути превращения одних веществ в другие.

Возникнув в древности, роскошное и мощное дерево химии бурно разрослось и расцвело – возникли и плодотворно развиваются такие отрасли, как неорганическая, координационная, органическая, элементорганическая, аналитическая, физическая, радиационная, коллоидная химия, биохимия, геохимия, космохимия, химия полимеров, химия плазмы, химия низких температур и др. И везде нужны подготовленные люди: инженеры-химики, ученые, рабочие, насыщенная инженерная деятельность, развитая наука.

Одним из важнейших и обширных разделов химии является электрохимия. Электрохимия представляет собой область химии, которая изучает условия и механизм превращения одних веществ в другие, связанные с подводом или отводом электрической энергии. Процессы, протекающие за счет подведенной извне электрической энергии, или же, наоборот, служащие источником ее получения, называют электрохимическими процессами.

Химические и электрохимические реакции люди широко используют на протяжении многих веков, вкладывая свои знания и умения в решение сложных задач, в том числе и конкретные инженерные знания. Рассмотрению некоторых аспектов возникновения электрохимии, ее развития, конкретной инженерной деятельности в этой области посвящена настоящая лекция.

1. Зарождение электрохимии и ее становление.

2. Достижения в электрохимии и практическое их применение.

 

Термин «химия» («хемия») впервые упоминается в трактате Зосимуса – египетского грека из города Панополиса (ок. 400 г. н.э.). В нем Зосимус рассказывает, что «химии», или же «священному тайному искусству» людей обучили демоны, сошедшие с небес на землю. Первая книга, согласно Зосимусу, в которой описывались приемы тайного «искусства», была будто бы написана пророком Хемесом, от имени которого и берет начало «хемия», «химия».

На родине химии – в древнем Египте – тайной «священного искусства» владела каста жрецов. Они были настолько всесильными, что их побаивались даже фараоны. В храмах египетские жрецы, кроме богослужения, занимались также политикой и науками – астрономией, математикой, медициной. Они с большой точностью предвидели солнечные затмения, перемену погоды, проводили сложные расчеты пирамид и других сооружений. Успешно развивалось в Египте и химическое ремесло. Изобретенный жрецами способ бальзамирования умерших (мумификация) еще и сегодня вызывает удивление и восхищение. До наших дней чудесно сохранилось много египетских мумий и среди них знаменитая мумия 18-летнего фараона Тутанхамона. Жрецы владели секретами изготовления косметических препаратов, лекарств, ядов, кирпича, стекла, лаков, красок и т.д.

Успешно развивалась химия и в странах Азии – Месопотамии, Индии, Китае. Металлурги древнего Вавилона выплавляли сурьму и сурьмянистые бронзы уже около 3000 лет до н.э.

При раскопках около Багдада ученые нашли глазурованные керамические горшки, в которые были вставлены медные цилиндры, а в них через битумную пробку – железные стержни. Причем медь оказалась сильно разъеденной. Если в такой цилиндр налить электролит, например, раствор соляной кислоты, то возникает электрический ток. Нет сомнения, что здесь мы имеем дело с древним гальваническим элементом – электрохимическим источником тока.

Одновременно были найдены серебряные изделия с чрезвычайно тонкой и равномерной позолотой. Такую позолоту, по мнению ученых, можно нанести только электрохимическим способом.

Значительные успехи в развитии практической химии, в том числе электрохимии, были достигнуты в Китае. На гробнице китайского полководца Чжао-Чжу, похороненного в 316 г., есть металлический орнамент. Когда химики сделали анализ металла, то оказалось, что он содержит 5 % магния, 10 % меди и 85 % алюминия. Сегодня известно, что алюминий можно получить исключительно электрохимическим способом.

Приведенные факты свидетельствуют, что еще в древности человек стремился познать тайны превращения веществ и достиг немалых результатов, используя химические и электрохимические процессы.

Так как при электрохимических превращениях веществ обязательным условием является участие электричества, то становится очевидным, что развитие электрохимии тесно связано с ассимиляцией достижений в познании электричества. Впервые мысль о глубокой взаимосвязи электрических и химических явлений высказал в 1765 году М.В.Ломоносов: «Без химии путь к познанию истинной природы электричества закрыт».

Электричество, как и химические процессы, было знакомо людям еще в древности. Они обнаружили, что при трении кусочка янтаря о шелковую ткань он приобретает удивительное свойство – может притягивать к себе легкие предметы. Греки назвали янтарь электроном. Отсюда и появилось слово электричество.

Особый интерес к электричеству проявили в XVII–XVIII веках. Тогда же появилась и первая теория о сущности электричества. Ее создатель – знаменитый Бенджамин Франклин – тот самый, известный деятель борьбы за независимость британских колоний в Америке. Самым значительным достижением ученого является попытка выяснить природу электричества. В соответствии с философскими представлениями своего времени о явлениях природы, Франклин ищет материальный носитель электричества, похожий на некоторое вещество – «электрический флюид», который содержится в телах и может переходить из одного тела в другое. По его мнению «электрическая материя» состоит из частиц, которые так малы, что могут легко и свободно проникать в обыкновенную, даже самую плотную материю.

Идею Франклина о существовании мельчайших материальных носителей электричества; «атомов электричества», с доверием встретили многие ученые.

Начались поиски атомов электричества. Следовало отделить их от атомов вещества, открыть и изучить процессы, в которых атомы электричества проявили бы свои свойства. Такая возможность представилась при исследованиях явлений в разряженных газах.

Было установлено, что при прохождении электрического тока в стеклянных трубках, наполненных разряженными газами, проявляются лучи, которые распространяются от катода к аноду. Их назвали катодными лучами.

Немецкий ученый Ф.Леонард установил, что катодные лучи могут проникать через очень тонкое окошко запаянной трубки.

Дальнейшие исследования Уильяма Крукса, Дж. Томсона и других ученых позволили определить, что катодные лучи – это поток отрицательно заряженных частиц, масса которых почти в 2000 раз меньше массы самого легкого атома – атома водорода. Таким образом стало ясно, что атом не является наименьшей неделимой частицей вещества. Было установлено, что атом состоит из положительно заряженного ядра и отрицательно заряженных электронов. При сообщении атому дополнительной энергии некоторые электроны могут утратить связь с ядром. При этом атомы превращаются в положительные ионы. Оторвавшись от одного атома, электрон может присоединиться к другому, образуя отрицательный ион. Таким образом была подтверждена гипотеза Франклина о существовании «электрического флюида». Им оказался поток электронов в металлах и поток положительных и отрицательных ионов в растворах и расплавах солей, растворах кислот и щелочей.

Первые научные представления о принципах взаимосвязи электрических и химических явлений относятся к концу XVIII – началу XIX века. Итальянский физик А.Вольта, один из основоположников учения об электричестве, в 1793–1801 годах предложил разместить металлы в так называемый электрохимический ряд напряжений в зависимости от того, насколько легко атомы металлов способны окисляться, т.е. переходить в состояние положительных ионов. А побудило его к этому наблюдение итальянского врача А. Гальвани, который обнаружил появление электрического тока в мышцах лапки лягушки (по сокращению мышцы) в тот момент, когда лапка лягушки, подвешенная на медной проволоке, касалась железной сетки. Обнаруженное явление привело к изобретению химического источника электрического тока – Вольтова столба.

С помощью Вольтова столба шведскому химику И. Л. Берцелиусу в 1802 году удалось электрически разложить водные растворы солей, а английскому химику Г. Дэви в 1807 году – расплавы солей.

Изучение таких электрохимических процессов привело к необходимости поиска механизма протекания электрического тока в этих системах.

К объяснению механизма протекания электрического тока в растворах солей ученые шли долго и настойчиво.

Первое и удачное объяснение принадлежит К. Гротгусу. По представлениям Гротгуса, компоненты воды – это частицы, несущие электрический заряд: кислород – отрицательный, а водород – положительный. Длинные цепи последовательно расположенных атомов кислорода и водорода простираются от одного электрода к другому. Крайние атомы этих цепей – на одном конце водород, а на другом кислород, разряжаются на электродах и выделяются в виде газов. Теория Гротгуса отличалась наглядностью и простотой, но не могла до конца объяснить механизм электропроводности растворов.

Новый крупный шаг в объяснении механизма протекания электрического тока в растворах сделал в первой четверти XIX века шведский химик И. Берцелиус. Он разделил все «тела» на два класса – с положительным электрическим зарядом и с отрицательным. При химическом соединении тел происходит нейтрализация противоположных зарядов. Далее Берцелиус предположил, что при пропускании электрического тока через раствор нейтрального «тела» последнее распадается на составляющие – положительно заряженное и отрицательно заряженное «тела». Так возникла электрохимическая теория химической связи. Простота теории и большой авторитет ее создателя определили ее широкое применение при объяснении химических процессов, несмотря на то, что данные экспериментов очень часто не согласовывались с теоретическими постулатами.

В начале XIX века свой вклад в электрохимию внес М. Фарадей. Он впервые вводит понятия: электролит, электрод, электролиз, анод, катод, ион, анион, катион, которые стали научными терминами и широко используются в наши дни. По мнению Фарадея, электролиты – это вещества, которые в водном растворе распадаются на положительные и отрицательные ионы (катионы и анионы). Он считал, что такой распад возможен только под действием электрического тока.

И далее усилия многих ученых были направлены на изучение электропроводности растворов. Русский физик А. Савельев в 1853 году установил существование зависимости электропроводности растворов от температуры и концентрации.

Немецкий физик и химик В. Гитторф всесторонне изучал движение ионов в растворах. Он доказал, что при протекании электрического тока в растворах катионы (положительные ионы) движутся к катоду, а анионы (отрицательные ионы) – к аноду. Впервые он высказал мысль, что «появление ионов не есть результат действия электрического тока». Но смелые идеи Гитторфа не были поддержаны известными учеными того времени. Г. Дэви, М. Де ла Гив, М. Фарадей продолжали считать, что ионы появляются только под действием электрического тока.

В 1857 году Р. Клаузиус предположил, что при тепловом движении между молекулами происходят столкновения, которые приводят к распаду их на ионы, которые в течение некоторого времени существуют самостоятельно. С повышением температуры увеличивается скорость движения молекул, растет число столкновений, увеличивается число столкновений, а следовательно растет электропроводность раствора. Теорию Клаузиуса ученые признали быстро, но при интерпретации экспериментальных результатов возникли затруднения. Теория не смогла объяснить, почему легче всего распадаются на ионы молекулы тех соединений, которые, как тогда считалось, состоят из элементов с наибольшим сродством друг к другу. И вскоре теория Р. Клаузиуса была забыта.

В истории электрохимической науки значительное место занимают исследования Г. Гельмгольца. Он считал, что при растворении электролитов некоторые молекулы распадаются на ионы, которые существуют в растворе независимо от того, протекает через него электрический ток или нет. Число положительных и отрицательных ионов в растворе одинаково, так что в целом он электронейтрален. Если погрузить в раствор электроды и приложить напряжение, то ионы начинают двигаться к электродам и, достигнув их, отдают свой заряд, т.е. разряжаются. Так они превращаются в электронейтральные атомы. В разных электролитах этот процесс происходит при различном напряжении между электродами. Теория Гельмгольца вплотную приблизилась к принятой позже и не потерявшей значения до сегодняшнего дня теории электролитической диссоциации Аррениуса.

Существование ионов в растворах кислот, оснований и солей независимо от протекания через раствор электрического тока научно доказал в 1884 году шведский химик Сванте Аррениус в своей докторской диссертации, в которой изложил учение об электролитической диссоциации.

Так же как Гельмгольц, Аррениус считал, что всегда в растворах часть молекул электролита диссоциирует на ионы. Этот процесс происходит при растворении, независимо от того, пропускается через раствор электрический ток или нет. Но в отличие от своего предшественника, он утверждал, что при этом в растворе устанавливается равновесие между ионами и недиссоциированными молекулами. Так впервые идея о химическом равновесии была использована для объяснения свойств растворов электролитов. С. Аррениус ввел понятие степени электролитической диссоциации, т.е. отношения числа молекул, распавшихся на ионы, к общему числу молекул электролита и разделил электролиты на сильные (у них степень электролитической диссоциации близка к 1) и слабые (у них диссоциирует лишь незначительная часть молекул). Результаты работ Аррениуса явились основой теории электролитической диссоциации, которая носит его имя.

С. Аррениус окончательно доказал, что электрический ток в растворах электролитов переносят ионы. Подводится электрический ток к раствору с помощью металлических проводов и металлических электродов. Возникшее «противоречие» (электричество подводится к раствору в виде потока электронов, а в растворе оно представляет поток ионов) привело к важному выводу: при прохождении электрического тока через растворы электролитов на электродах должны происходить химические превращения веществ, т.е. электрическая энергия должна превращаться в энергию химического процесса.

Впервые химический процесс (разложение воды) под действием электрического тока наблюдали в 1800 году У.Никольсон и К. Карлейль. Они обратили внимание, что на катоде выделяется водород, а на аноде кислород. Объясняется это следующим образом. Положительный ион водорода подходит к отрицательному электроду (катоду), получает подведенный от источника тока электрон и превращается в атом водорода. То есть на поверхности катода происходит процесс восстановления. К аноду подходят отрицательные ионы гидроксония (ОН~) и разряжаются там, отдавая электрон, и превращается в атом кислорода. На аноде происходит процесс окисления.

Процесс восстановления или окисления на электродах компонентов электролита, сопровождаемый приобретением или потерей электронов частицами реагирующего вещества в результате электрохимических реакций, назвали электролизом.

Электролиз основательно изучал англичанин Майкл Фарадей. В 1833 году он открывает знаменитые законы электролиза, названные его именем. Фарадей установил, что электрический заряд, который должен пройти через электролит, чтобы выделить один моль вещества, не произволен. Так, например, для выделения 1 г водорода, 23 г натрия, 35,45 г хлора или 107,87 г серебра (т.е. по одному молю каждого из этих веществ) необходимо через электролит пропустить электрический заряд, равный 96500 кулонов (Кл). Для выделения одного моля магния (24,31 г), кальция (40,08 г) или цинка (65,38 г) пропущенный электрический заряд увеличивается в два раза, он равен 193000 Кл.

Результаты этих экспериментов можно легко объяснить, если учесть, что каждый атом водорода, натрия, хлора или серебра переносит через электролит один и тот же электрический заряд – е, а каждый атом магния, кальция или цинка вдвое больший – 2е.

Изучая электролиз, Н. Леблан в 1891 году установил, что каждому электролиту свойственно определенное минимальное напряжение, ниже которого процесс электролиза невозможен. Он назвал это напряжение напряжением разложения. Оказалось, что электролиз солей щелочных металлов и кислородсодержащих кислот (например, сульфата натрия) начинается при напряжении 2,2 В, электролиз самих кислот – при 1,7 В, а остальных кислот – при еще более низких напряжениях.

Электролиз можно проводить не только в растворах, но и в расплавах. Причем, некоторые металлы (например, алюминий) можно получить только электролизом расплавов.

В 1888 году в Америке в результате кропотливой работы ученых и инженеров впервые был разработан метод промышленного получения алюминия путем электролиза расплава оксида алюминия и криолита. Процесс происходит при температуре 960 градусов. На катоде выделяется алюминий. Он тяжелее расплавленного электролита и поэтому собирается на дне электролизной ванны.

Металлический магний получил в 1852 году Р. Бунзен электролизом расплавленного безводного хлорида магния. Промышленный способ электролитического получения этого металла освоили в Англии в 1883 году.

Электрохимия в Российском государстве начинала свой путь с опытов М. В. Ломоносова по разложению воды электрическим током.

В дальнейшем большой вклад в развитие электрохимии внесли русские ученые В. В. Петров, С. П. Власов, Ф. Гротгус, Б. С. Якоби, Е. Х. Ленц, А. С. Савельев.

В. В. Петров впервые выделил электролитическим способом ртуть, свинец, олово; объяснил роль атмосферного кислорода при электролизе воды; открыл электрическую дугу (дуга Петрова). В 1803 году он опубликовал книгу по электролизу воды и водных растворов.

С. П. Власов впервые в 1807 году электролизом выделил щелочные металлы.

В 1806 году Ф. Гротгус впервые выступил с теорией электропроводности.

Б. С. Якоби создал гальванические цинк-медные элементы (элемент Даниэля-Якоби) и детально изучил процессы, происходящие в них.

Е. Х. Ленц и А. С. Савельев внесли значительный вклад в развитие теории поляризации.

В тесной связи с научными достижениями русских ученых – электрохимиков развивалась электрохимическая наука в Украине.

Первые экспериментальные исследования по электрохимии провел в Украине профессор Харьковского университета В. И. Лапшин в 1858 году. Он изучал действие электрического тока на ряд химических соединений, подвергая их электролизу.

С 1860 года начинаются работы исследователей – электрохимиков в Киеве, Харькове, Одессе. Но особенно интенсивно электрохимическая наука в Украине стала развиваться в 20-х годах прошлого столетия. Ученые и инженеры Киева, Харькова, Днепропетровска и других городов создали центры научных исследований. Они стали работать над такими проблемами электрохимии, как теория электродных потенциалов, коррозия металлов, антикоррозионные покрытия, кинетика электродных процессов, исследования в области химических источников тока.

Заслуга создания теории кинетики электродных процессов и связи их ее со строением приэлектродного слоя принадлежит в основном А. Н. Фрумкину. Научная деятельность Фрумкина начиналась в Одесском Институте народного образования в 1920–1922 годах, где он провел чрезвычайно важные исследования в области электрокапиллярных явлений.

Ученик А. Н. Фрумкина М. А. Лошкарев сформулировал теорию адсорбционной поляризации, описывающую связь адсорбции с кинетикой электрохимических реакций.

В разработке общей теории электрохимической кинетики значительное место занимают исследования, выполненные в Институте общей и неорганической химии под руководством А. В. Городыского.

Созданию теории электрохимической кинетики способствовали разработки Л. И. Антропова в Киевском политехническом институте, Д. Н. Грицана в Харьковском государственном университете, В. А. Тягай в институте полупроводников и ряда других ученых.

Ф. К. Андрющенко и В. В. Орехова в Харьковском политехническом институте создали теоретические предпосылки подбора лигандов в комплексных системах, что послужило основой для разработки ряда бесцианистых электролитов.

Важное место в электрохимии занимают исследования расплавленных сред. Одним из основоположников электрохимии расплавленных сред является профессор Харьковского (а позже – Одесского) университета В. И. Лапшин. В дальнейшем эту проблему успешно решал выдающийся химик Н. Н. Бекетов. Основной его вклад в науку – установление электрохимического ряда напряжений металлов (ряд Бекетова).

Большой вклад в развитие электрохимии расплавленных сред внес профессор Киевского политехнического института В. А. Избеков. Одним из наиболее важных аспектов его научной деятельности было определение напряжений разложения расплавленных солей. Полученный им ряд напряжений металлов существенно отличается от «водного» ряда.

Работы Избекова в области электродных потенциалов были продолжены академиком НАН Украины Ю. К. Делимарским.

Ионные расплавы дают более широкие возможности для управления электродными процессами по сравнению с водными растворами.

Успешно развивается также отечественная техническая электрохимия. В 1879 году был выдан первый в России патент на метод получения хлора электролизом поваренной соли (Н. Глухов и Ф. Ващук). Первый завод, где применили электролиз хлорида натрия с целью получения хлора, гипохлорита, хлорита и щелочи, был пущен в 1901 году в Украине (г. Славянск).

М. М. Воронин в Киевском политехническом институте разработал электролиз хлорида калия с целью получения бертолетовой соли. Он также доказал возможность получения перекиси водорода на специальных электродах с достаточно высоким выходу по току.

Решением проблемы электрохимического получения веществ высокой чистоты занимались сотрудники кафедры физической химии Киевского политехнического института под руководством О.К.Кудры.

Важные работы по электрохимическому синтезу органических соединений выполнены в НИИ Монокристаллов (В. Д. Безуглый).

Основоположником технического электролиза расплавленных сред в нашей стране был профессор Петербургского политехнического института П. П. Федотьев, разработавший теоретические основы электролитического получения алюминия. Его ученик М. М. Воронин впервые получил магний путем электролиза расплавленного карналлита.

В институте обшей и неорганической химии АН УССР в результате детального изучения электродных процессов в ионных расплавах предложены и разработаны новые электрохимические методы, позволяющие быстро и экономично очищать металлы от примесей.

Работы в области технической электрохимии проводятся также на Днепропетровском алюминиевом заводе, Институте коллоидной химии, Харьковском политехническом институте, Днепропетровском химико-технологическом институте и других заведениях.

Так в Харьковском политехническом институте профессором Ф. К. Андрющенко была доказана возможность осуществления процесса электролиза воды со щелочными электролитами при плотностях тока 10000–20000 А/кв.м без увеличения расхода электроэнергии по сравнению с промышленными электролизерами ФВ–500. Полученные результаты позволяют интенсифицировать процесс электрохимического получения водорода.

Большинство разработок отечественных ученых в области технической электрохимии направлены на решение важных задач в промышленности.

В Украине проводятся обширные исследования по коррозии металлов и защите от коррозии.

Первые исследования по коррозии металлов выполнены в Институте общей и неорганической химии НАН Украины Н. Н. Грацианским. В 1936 году была организована первая исследовательская лаборатория по коррозии и защите металлов.

Вторым центром исследований по коррозии в Украине был Институт черной металлургии НАН Украины. Здесь под руководством И. Н. Францевича была решена проблема защиты газопровода Дашава – Киев и Дашава – Москва от грунтовой коррозии и блуждающих токов.

В Киевском политехническом институте под руководством Н. В. Воронина проведены работы в области антикоррозионных гальванических покрытий никелем, цинком, медью.

Важные исследования в области гальванических покрытий проводились в Харьковском химико-технологическом институте. Здесь В. П. Машовец и С. Я. Пасечник изучали процессы никелирования и пути интенсификации работы никелирующих ванн. Т. С. Филиппов исследовал процессы цинкования и свинцевания железных деталей.

Д. Н. Грицан в Харьковском государственном университете изучал процессы нанесения покрытий из сплавов марганец-никель и марганец-хром.

В последние десятилетия ХХ в. в Украине успешно продолжались исследования процессов нанесения гальванических, химических и конверсионных антикоррозионных покрытий. Отечественные ученые занимают ведущее место в исследовании ингибиторов коррозии.

Получили развитие исследования новых процессов нанесения гальванопокрытий (серебрение, меднение, свинцевание) из расплавленных и неводных сред, получения тонкодисперсных порошков тяжелых металлов и интерметаллических соединений.

В Харьковском политехническом институте профессором Ф. К. Андрющенко был предложен электрохимический способ получения оксидных пленок на титане, цирконии, ниобии. Работы успешно продолжались Б. И. Байрачным. Результаты исследований обобщены в работе Б. И. Байрачного и Ф. К. Андрющенко «Электрохимия вентильных металлов».

Профессором Харьковского политехнического института В. В. Ореховой с сотрудниками созданы процессы нанесения гальванических защитно-декоративных покрытий, заменяющих покрытия драгоценными металлами.

В последние годы ученые Украины уделяют большое внимание электрохимической энергетике. Изучение проблемы непосредственного превращения химической энергии в электрическую впервые было начато в 1940-х гг. прошлого столетия О. К. Давтяном. В 1956 году в Одесском государственном университете была создана лаборатория топливных элементов. Здесь под руководством Давтяна проведен цикл исследований, посвященных механизму и кинетике токообразующих процессов горения газа.

В направлении усовершенствования классических химических источников тока проводятся работы в Харьковском и Киевском политехническом институтах.

В Институте общей и неорганической химии НАН Украины с конца 1970-х гг. ХХ века ведутся исследования в направлении создания новых химических источников тока на основе легких металлов с резко повышенными удельными характеристиками.

Проблемами создания новых химических источников тока занимаются в Институте материаловедения, Днепропетровском химико-технологическом институте, Днепропетровском институте инженеров железнодорожного транспорта.

Важным вопросом современной электрохимии является преобразование солнечной энергии в электрическую. В Украине проблемой фотоэлектрохимии занимаются в Институте общей и неорганической химии, Институте физической химии (Киев), Физико-химическом институте (Одесса).

Ученые и инженеры Украины вносят значительный вклад а развитие электрохимии. Их исследования не только развивают электрохимическую науку, но и приносят большую практическую пользу. Достижения электрохимической науки успешно используются в различных отраслях промышленности.

Одним из наиболее важных направлений прикладной электрохимии является электролитическое нанесение металлических покрытий – гальванотехника. В зависимости от физико-химических свойств получаемых покрытий и их назначения в гальванотехнике выделяются два направления: гальваностегия и гальванопластика. Основное различие между ними заключается в том, что в гальваностегии добиваются наилучшего сращивания осаждаемого металла с катодной основой, а в гальванопластике – полного отделения осаждаемого металла от материала основы, но в том и другом случае нужны глубокие знания, высокая инженерная подготовка.

Многочисленные покрытия, применяемые в гальваностегии, по своему назначению можно разделить на несколько групп:

– покрытия, защищающие металлические изделия от коррозии (цинк, кадмий, свинец, олово, никель и их сплавы);

– защитно-декоративные покрытия (медь с оксидированием, хром, никель, кобальт, золото, серебро и их сплавы);

– покрытия, увеличивающие поверхностную твердость и износостойкость (хром, железо, никель, родий и некоторые сплавы);

– покрытия, повышающие отражательную способность (родий, серебро, золото, хром, никель);

– покрытия, повышающие электропроводящие свойства поверхности (серебро, золото, медь и их сплавы);

– покрытия, защищающие отдельные участки деталей от цементации углеродом (медь) и от азотирования (олово);

– покрытия, сообщающие поверхности антифрикционные свойства (олово, медь, серебро, свинец, индий и их сплавы);

– покрытия, служащие маской при избирательном травлении металлов в производстве печатных плат и изделий электронной техники (олово, свинец, никель, серебро, золото и их сплавы);

– покрытия, улучшающие способность деталей к пайке (олово и его сплавы).

Кроме того гальваностегия применяется в ремонтном производстве для восстановления размеров изношенных деталей.

Гальванопластика – способ получения или воспроизведения предмета путем электролитического осаждения металла – находит широкое применение во многих отраслях промышленности, где необходимо точно воспроизвести особенности конструкции и все тонкости сложной формы.

Наиболее широко используют гальванопластику в граммофонной промышленности для изготовления матриц. В радиотехнике и электронике нашли применение гальванопластическое изготовление волноводов и фольги. Методом гальванопластики изготавливают трубы различной формы и размера, сетки, решетки, сита, сопла, пресс-формы. Широкие возможности гальванопластики позволяют изготавливать легкие полые изделия сложной формы и высокой точности для авиации и космонавтики.

Второе очень важное направление практической электрохимии – электролиз растворов, в частности раствора хлорида натрия (или морской воды) с целью получения хлора и его соединений, щелочи и водорода. А если процесс проводить на ртутном катоде, то получается амальгама натрия, из которой выделяют чистый натрий.

При электролизе растворов щелочи получают чистые кислород и водород за счет электрохимического разложения воды.

Особую группу в электрохимических процессах составляет электроорганический синтез. Например, ежегодно электрохимическим окислением толуола получают сотни тонн бензойной кислоты – ценного сырья для парфюмерной и фармацевтической промышленности. Значительные количества уксусной кислоты получают электролизом этилового спирта и ацетальдегида. Благодаря электроорганическому синтезу были получены прекрасные антрахиноновые красители для текстильного производства. Особенно плодотворным оказалось использование электролиза в фармацевтической промышленности. Так получают, например, карбоновые кислоты пиридина никотиновую, которая входит в состав витамина РР, изоникотиновую – важное сырье для изготовления противотуберкулезных препаратов (римифона и др.).

Для многих современных машин, аппаратов, приборов, в том числе для бытовых радио- и электротехнических устройств, требуются химические источники тока, производство которых стало важной отраслью технической электрохимии. Химические источники тока подразделяются на первичные (гальванические элементы одноразового использования) и вторичные (аккумуляторы многоразового использования).

В современной технике начали успешно применять новые источники электрического тока – топливные элементы. В них ток возникает в результате химического взаимодействия горючих веществ – водорода, бензина, дизельного топлица, угля, природного газа, амиака, металлов с разными окислителями, чаще с кислородом. Здесь мы имеем дело с прямым превращением химической формы энергии в электрическую.

Наибольшее распространение получили водородно-кислородные электрохимические генераторы. Электроды для них изготавливают из каталитически активных металлов (из губчатого никеля или платины – водородный электрод и активного серебра – кислородный). Электролитом служит раствор кислоты или щелочи. В этих элементах катод омывается струей водорода, а анод – струей кислорода. Электрический ток генерируется при непосредственном контакте трех фаз – газообразной (водород, кислород), жидкой (электролит) и твердой (материал электродов).

На поверхности катода молекулы водорода теряют свои электроны, соединяются с гидроксид-ионами электролита и образуют молекулы воды.

На аноде молекулы кислорода присоединяют электроны, которые движутся по проводнику от катода, соединяются с молекулами воды, в результате чего образуются гидроксид-ионы.

Топливные элементы имеют КПД почти в два раза выше, чем паровые турбины. Кроме того, у них нет движущихся частей, они долговечные, работают без шума, не образуют вредных отходов.

В космической технике наряду с солнечными батареями и радиоизотопными источниками энергии широко применяются и топливные элементы.

Для длительных полетов в космос немаловажное значение будут иметь биохимические топливные элементы. В них окислительно-восстановительные превращения осуществляются с помощью микроорганизмов, в результате чего и генерируется электрический ток. В условиях космического полета в биоэлементах будут перерабатываться отходы человеческой жизнедеятельности, а взамен образуются электрический ток, питьевая вода и невредные побочные продукты (углекислый газ, азот, соли).

Но самая перспективная отрасль использования водородно-кислородных топливных элементов – энергетика. Так, при малой нагрузке электростанции (например, ночью) топливный элемент функционирует как электролизер – разлагает воду и накопляет водород и кислород в газгольдерах высокого давления. При перегрузке электростанции водородно-кислородный элемент «сжигает» сжатые водород и кислород, и работает как электрохимический генератор, то есть вырабатывает дополнительный электрический ток.

Современная техника, в основном ядерная энергетика, требует огромного количества тяжелой воды, которая служит прекрасным замедлителем нейтронов в ядерных реакторах и источником для получения дейтерия.

Тяжелую воду можно получить электрохимическим способом – электролизом обычной воды. Дело в том, что в молекуле воды атом дейтерия связан с атомом кислорода прочнее, чем атом водорода. А в растворе ион дейтерия двигается медленнее, чем ион водорода. Поэтому во время электролиза разлагается в основном обычная вода, а тяжелая вода накопляется в остатке. Высококонцентрированные растворы тяжелой воды можно разделить фракционной перегонкой и получить 100-процентную тяжелую воду.

Но специально разлагать воду электролизом с целью получения тяжелой воды не выгодно. Поэтому тяжелую воду выделяют из остатков в электролизерах при получении водорода, кислорода, хлора, едкого натра и т.п.

Электрохимия приходит также на помощь в деле охраны окружающей среды. При очистке сточных вод и отработанных газов применяется электролиз.

Второй вид помощи, который оказывает электролиз в борьбе за охрану окружающей среды, связан с возможностью заменять производства с выделением вредных, загрязняющих окружающую среду веществ, электрохимическими производствами, где загрязнение намного меньше. Очевидно, например, гидрометаллургические производства намного чище пирометаллургических, в результате работы которых выделяются и теплота, и пыль, и дым.

Важное место занимают электрохимические методы для количественного определения веществ в почве, воде, воздухе, и даже в живых организмах. Одним из таких методов является электроанализ, при котором проводится электролиз и взвешивается выделившееся за определенное время вещество. Таким методом является и полярография, где чаще всего электролиз происходит на ртутный электрод и о свойствах данного вида ионов можно судить по потенциалу разложения.

При потенциометрическом титровании наблюдают электродвижущую силу гальванического элемента, созданного при участии тех ионов раствора, которые следует определить.

В Ы В О Д Ы

Возникнув в предисторические времена, пройдя многовековой путь развития, химия заняла видное место среди естественных наук, которые представляют собой систему познания материального мира и играют выдающуюся роль в жизни общества.

Электрохимия, представляющая обширнейшую и важнейшую область химии, развивалась бок о бок с наукой о веществах. Достижения электрохимии позволили изучить строение молекул, узнать о том, как они связаны между собой, как происходят окислительно-восстановительные реакции и многие другие закономерности превращения веществ.

Электрохимические методы лежат в основе многочисленных промышленных процессов, дающих необходимые человеку химические продукты: от простейшего электролиза воды с целью получения водорода и кислорода до электрохимического синтеза сложных органических соединений.

Благодаря достижениям электрохимии появилась возможность получения многих материалов, которые невозможно получить другими методами.

Электрохимия помогает людям бороться с коррозией, изготавливать сложнопрофильные, тонкостенные точные изделия, получать сверхчистые металлы.

Электрохимические процессы лежат в основе химических источников тока - элементов и аккумуляторов.

Немаловажна роль электрохимии в охране окружающей среды – очистке сточных вод и отработанных газов.

Не последнее место занимают и электрохимические методы количественного определения веществ в газообразных, жидких, твердых телах и даже в живых организмах.

Инженерная деятельность в области электрохимии отличается большим многообразием решения оригинальных инженерных задач, подходов, поисков. Усилиями коллективов ученых, инженеров, техников появляются материалы, осваиваются электрохимические методы, дающие возможность получать сложные органические соединения и многое другое.

Электрохимия занимает важное место среди других естественных наук в жизни человека.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: