Свойства и особенности пен

ПЕНЫ

Пены отличаются от других дисперсных систем подвижностью и способностью к изменению поверхности раздела фаз. Быстрое снижение поверхности раздела фаз сокращает время жизни пены и обусловливает необходимость применения ПАВ для сохранения устойчивости пен. Значительное увеличение удельной поверхности подвижной границы раздела фаз придает пенам особые свойства.

Пены образуются в некоторых технологических процессах, а также в условиях применения различных препаратов.

Пены представляют собой дисперсную систему типа Г/Ж, в которой дисперсной фазой является газ или пар, а дисперсионной средой — жидкость. В качестве дисперсной фазы могут служить пузырьки воздуха, находящиеся в воде. Пены относятся к концентрированным и высококонцентрированным дисперсным системам. Разбавленные дисперсные системы типа Г/Ж, содержание дисперсной фазы которых менее 0,1%, называют газовыми эмульсиями (см. табл. 1.1). В разбавленных системах происходит обратная седиментация — всплытие газовых пузырьков. В концентрированных и высококонцентрированных системах типа Г/Ж, т.е. собственно пенах, пузырьки соприкасаются друг с другом и лишены возможности свободного перемещения.

В отличие от других дисперсных систем, состав которых определяется концентрацией дисперсной фазы [см. формулы (1.8)—(1.10)], пены характеризуются содержанием дисперсионной среды. Так как масса и объем газовой дисперсной фазы непостоянны и быстро изменяются, то общее объемное содержание дисперсной фазы характеризуется кратностью пены β, которая показывает, во сколько раз объем пены V ппревышает объем жидкости V ж, необходимый для ее формирования

(16.1)

где V п, V r, V ж, — объем пены, газа и жидкой дисперсионной среды соответственно.

Относительная доля газа ε в пенах равна

(16.1, а)

Доля объема, занятого жидкостью, составляет 1 – ε = 1/β.

Пены называют влажными (низкократными), если β < 10, для сухих (высокократных) пен значение β превышает 100; если 10 ≤ β ≤ 100, то пены называют полусухими.

Пены являются крайне неустойчивыми дисперсными системами. Плотность жидкости в сотни и даже тысячи раз превышает плотность газа, из которого формируются пузырьки пены.

Пены относятся к грубодисперсным системам (см. табл. 1.3). В момент образования пузырьки пены видны невооруженным глазом, а их размеры неодинаковы, т.е. пены — типично полидисперсные системы. С увеличением кратности пены увеличивается объем газовой дисперсной фазы V г, что соответствует уравнению (16.1).

Пены как дисперсные системы типа Г/Ж имеют свои особенности, которые определяются свойствами дисперсной фазы и дисперсионной среды и границей раздела фаз между ними.

Изменение энергии Гиббса, характеризующее избыточную поверхностную энергию, для однокомпонентной системы [см. уравнение (2.1)] в отсутствие химического и электрического взаимодействий (d n i= 0, d q i= 0), в случае изобарно-изотермического процесса (d p = 0, d Т = 0) составляет

d G = σЖГd B; Δ G = σЖГΔ B, (16.2)

где σЖГ— поверхностное натяжение на границе раздела Ж—Г; Δ B — изменение поверхности раздела фаз после пенообразования.

Для самопроизвольного процесса

d G < 0. (16.2, а)

Межфазовое поверхностное натяжение пен, т.е. σЖГ, определяется свойствами жидкости и газовой среды. Если эти свойства не изменяются, то и σЖГбудет величиной постоянной. Поэтому самопроизвольное снижение свободной поверхностной энергии в соответствии с условием (16.2) и (16.2, а) происходит, когда

(16.3)

В самопроизвольных процессах (см. рис. 2.1), когда d G < 0, σЖГ= const, уменьшение энергии Гиббса сопровождается только снижением величины Δ B, что приводит к разрушению пен.

Условие (16.3) означает самопроизвольное сокращение поверхности раздела фаз. Оно также следует из формулы (2.14). У твердых тел условие (16.3) не соблюдается и сохраняется форма частиц и рельеф поверхности. В отношении жидких частиц условие (16.3) проявляется в образовании сферических капель, что имеет место для эмульсий (см, гл. 15). Для пен, обладающих эластичной поверхностью, уменьшение границы раздела фаз означает сжатие пузырьков и их исчезновение, т.е. разрушение пен.

Рис. 16.1. Структура пен в виде пузырьков (а), полиэдрического монослоя (б) и объемных многогранников (в):

1 — пузырьки газа; 2 — жидкость; 3, 4, 5 — пленки (слой жидкости), каналы и узлы

Приводим в качестве примера некоторые параметры, характеризующие пены на основе фторуглеродных ПАВ (общая формула R FСOOХ, где R F— радикал, содержащий атом фтора). Кратность таких пен равна 3—4; время жизни 180—280 с; межфазовое поверхностное натяжение 17,7¸21,3 мДж/м2; поверхностная активность 5,0—7,1 мДж·м/моль; предельная адсорбция (2,39¸3,35) ∙10-6моль/м2.

Термодинамический подход, однако, не позволяет рассмотреть особенности структуры пен, которая определяется формой пузырьков, их размерами и упаковкой. Пузырьки дисперсной фазы пен могут иметь сферическую и многогранную (полиэдрическую) форму (рис. 16.1). Кроме того, различают еще и ячеистую структуру пен. которая образуется при переходе сферической формы пузырьков в полиэдрическую. Подобный переход имеет место, когда кратность пен колеблется в пределах 10—20.

В пене происходит контакт пузырьков, разделенных между собой слоем жидкости. При осуществлении контакта четырех пузырьков одного размера возникает неустойчивое равновесие, которое нарушается и переходит в устойчивое равновесие трех пузырьков. Монослой полиэдрической пены будет иметь регулярную структуру с гексагональной упаковкой.

Пленки жидкости, находящиеся между пузырьками, образуют так называемые треугольники Плато (рис. 16.2). В каждом ребре многогранника сходятся три жидкие пленки, которые являются стенками пузырьков. Эти пленки образуют между собой углы, близкие к 120°. Сечение пленки жидкости пены по линии АА (см. рис. 16.1, в) показано на рис. 16.2. В местах стыков пленок (ребер многогранников) образуются утолщения, которые названы каналами. Каналы формируют в поперечном сечении треугольники. Четыре канала сходятся в одной точке, образуя узлы (см. рис. 16.1, в). Каналы и узлы пронизывают всю структуру пены.

Жидкие пленки в центре плоскопараллельны. Вблизи каналов они утолщены и становятся вогнутыми. В результате возникает капиллярное давление, вызывающее отток жидкости из пленок в каналы (этот отток на рис. 16.2 показан стрелками). Жидкие пленки утончаются.

Под действием гравитации жидкость собирается в каналы и по узлам стекает в нижнюю часть пены. Если для систем T/Ж и Ж/Ж гравитация способствует седиментации частиц дисперсной фазы, то для пен, т.е. систем Г/Ж, гравитация обусловливает сток жидкости, составляющую дисперсионную среду; размер и число пузырьков уменьшается — пена гасится.

Как показали эксперименты, проводимые космонавтами на околоземных орбитах, в условиях невесомости (точнее, микрогравитации), время жизни жидких пен возрастает в десятки и даже в сотни раз. Это объясняется тем, что исключается сток жидкости по каналам и узлам. В земных условиях необходимо применять дополнительные меры по сохранению устойчивости пен.

Пены обладают рядом коллоидно-химических и физико-химических свойств. Для них характерны электроосмос и потенциал течения. Пены способны поглощать и рассеивать свет. В слое жидкости, разделяющем пузырьки пены, возникает расклинивающее давление, а внутри пузырьков — капиллярное давление. Кроме того, пены могут обладать определенной электропроводностью. Для применения пен большое значение приобретает их вязкость.

Кинематическая вязкость пены превышает вязкость воды и зависит от скорости перемещения пены. При скорости 0,2—0,4 м/с кинематическая вязкость пены оставляет (200—300)10–6м2/с, а при меньших скоростях она снижается до (2—5)10 м2/с. Напомним, что кинематическая вязкость есть частное от деления динамической вязкости на удельную массу, для воды она равна 10–6м2/с и не зависит от скорости движения водной среды.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: