double arrow

Плутониевая бомба. В основу ядерного оружия положена неуправляемая цепная реакция деления ядра. Для осуществления цепной реакции используются изотопы уран-235, плутоний-239 и (в

Принцип действия

В основу ядерного оружия положена неуправляемая цепная реакция деления ядра. Для осуществления цепной реакции используются изотопы уран-235, плутоний-239 и (в отдельных случаях) уран-233. Существуют две основные схемы: «пушечная», иначе называемая баллистической, и имплозивная.

«Пушечная» схема характерна для самых примитивных моделей ядерного оружия I-го поколения, а также артиллерийских и стрелковых ядерных боеприпасов, имеющих ограничения по калибру оружия. Суть её заключается в «выстреливании» навстречу друг другу двух блоков делящегося вещества докритической массы. Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет более высокий нейтронный фон, что приводит к увеличению требующейся скорости соединения частей заряда, превышающий технически достижимые. Другая причина использования урана в артиллерийских боеприпасах та, что уран лучше, чем плутоний выдерживает перегрузки, не деформируясь.

Вторая схема - «имплозивная» - подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом обычной химической взрывчатки, которой для фокусировки придаётся весьма сложная форма и подрыв производится одновременно в нескольких точках с прецизионной точностью.

Мощность ядерного заряда, работающего исключительно на принципах деления тяжёлых элементов, ограничивается сотнями килотонн. Создать более мощный заряд, основанный только на делении ядер, возможно, но крайне затруднительно: увеличение массы делящегося вещества не решает проблему, так как начавшийся взрыв распыляет часть топлива, оно не успевает прореагировать полностью и, таким образом, оказывается бесполезным, лишь увеличивая массу боеприпаса и радиоактивное поражение местности. Самый мощный в мире боеприпас, основанный только на делении ядер, был испытан в США 15 ноября 1952 года, мощность взрыва составила 500 кт.

Урановые боеприпасы

Уран в природе встречается в виде двух изотопов — уран-235 (0,7% природного урана) и уран-238 (всё остальное, т.е. 99,3%). В качестве материала для цепной реакции используется только уран-235. Уран-238, напротив, для этих целей не может применяться, поскольку он препятствует ядерной реакции (а его примесь в уране-235 может погасить начавшуюся реакцию). Для обеспечения «работоспособности» ядерной бомбы содержание урана-235 должно быть не ниже 80%, иначе уран-238 быстро погасит цепную ядерную реакцию. Поэтому при производстве ядерного топлива применяют сложный и крайне затратный процесс обогащения урана, в результате которого доля урана-235 повышается.

Бомба на основе урана стала первым ядерным боеприпасом, применённым в боевых условиях (бомба «Малыш», сброшенная на Хиросиму). Уран для её производства был добыт в Бельгийском Конго (ныне Демократическая Республика Конго).

Первым ядерным зарядом, взорванным в испытательных целях, было ядерное устройство «Gadget», «Штучка» (англ. gadget — приспособление, безделушка) — прототип плутониевой бомбы «Толстяк», сброшенной на Нагасаки. Испытания проводились на полигоне неподалеку от местечка Аламогордо в штате Нью-Мексико.

Схема этой бомбы (типичная для плутониевых однофазных боеприпасов) была примерно следующей:

1. нейтронный инициатор (НИ, «ёжик», «урчин» (англ. urchin)) — шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 — первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время данный тип инициирования не используется. Нашли применение несколько схем инициирования, такие как импульсное нейтронное инициирование (ИНИ)и термоядерное инициирование (ТИ). Импульсный нейтронный источник (ИНИ) представляет собой компактные ускорители ядер трития, ударявших в мишень, содержащую дейтерий. В термоядерной Т–Д реакции при этом производятся нейтроны, которые и использовались для нейтронного инициирования цепной реакции. Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревался сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции.

2. Плутоний. Желателен максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.

3. Оболочка (англ. tamper), служащая отражателем нейтронов (из урана).

4. Обжимающая оболочка (англ. pusher) из алюминия. Обеспечивает бо́льшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

5. Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток — боратола и ТАТВ.

6. Корпус, изготовленный из дюралевых штампованных элементов — две сферических крышки и пояс, соединяемых болтами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: