Студопедия
Поделиться в соц. сетях:


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Мощность ГЭС и выработка энергии




В энергосистеме ГЭС обычно используется для выработки электроэнергии, покрытия графика нагрузки, особенно его пиковой части, регулирования частоты электрического тока в системе, в качестве резерва и для выработки реактивной мощности в режиме синхронного компенсатора.

Режим работы ГЭС в энергосистеме зависит от расхода воды, напора, объема водохранилища, потребностей энергосистемы, ограничений по верхнему и нижнему бьефу.

Агрегаты ГЭС по техническим условиям могут быстро включаться, набирать нагрузку и останавливаться. Причем включение и выключение агрегатов, регулирование нагрузки могут происходить автоматически при изменении частоты электрического тока в энергосистеме. Для включения остановленного агрегата и набора полной нагрузки обычно требуется всего 1—2 мин.

Мощность на валу гидротурбины (кВт) определяется как

(17.7)

где т — расход воды через гидротурбину, м3/с;
Нт — напор турбины, м;
ηт — коэффициент полезного действия (КПД) турбины.

Напор турбины равен:

(17.8)

где ∇ВБ, ∇НБ — отметки уровня воды соответственно в верхнем и нижнем бьефе, м;
Нг — геометрический напор;
∆h — потери напора в водоподводящем тракте, м.

Потери напора обычно составляют 2—5 % Нг. Значение КПД гидротурбины зависит от ее конструкции, размеров и режимов работы. Коэффициент полезного действия современных крупных гидротурбин может достигать 0,95.

Электрическая мощность гидроагрегата Na на выводах генератора

(17.9)

где ηген — КПД гидрогенератора.

Обычно КПД гидрогенератора равен 0,9—0,98.

Регулирование мощности агрегата ГЭС производится изменением расхода, проходящего через гидротурбину. Мощность ГЭС в i-й момент времени равна:

(17.10)

где гi, Hгi, ηгi — расход ГЭС, напор ГЭС и КПД ГЭС соответственно в i-й момент времени.

Выработка электроэнергии ГЭС (кВт · ч) за период времени Т (ч) определяется как

(17.11)

В качестве расчетного периода Т рассматриваются час, сутки, неделя, месяц, год.

Годовая выработка электроэнергии ГЭС не является постоянной величиной, а изменяется в зависимости от объема стока, поступающего в водохранилище, степени его регулирования и условий эксплуатации ГЭС. При годичном регулировании годовая выработка электроэнергии ГЭС, как правило, существенно колеблется в основном за счет энергоотдачи в паводковый период.

При многолетнем регулировании неравномерность выработки электроэнергии по годам бывает незначительной.

Среднемноголетняя выработка электроэнергии является важной характеристикой, используемой при определении технико-экономических показателей ГЭС.

Для оценки работы ГЭС в энергосистеме служит условное число часов использования установленной мощности в году Ту представляющее собой отношение:




(17.12)

где Nу — установленная мощность ГЭС;
г — среднегодовая выработка.

Для остропиковых ГЭС Ту ≤ 2000 ч, а для ГЭС, работающих в полупиковом режиме, Ту возрастает до 4000 ч. Если ГЭС предназначается для базисной работы, то Ту составляет обычно 6000—6500 ч. Теоретическим пределом является Ту = 8760 ч.

Эксплуатационный персонал на ГЭС существенно меньше, чем на тепловой или атомной электростанции аналогичной мощности.

Себестоимость выработки электроэнергии на ГЭС обычно в 6—8 раз ниже, чем на ТЭС или АЭС.





Дата добавления: 2014-01-25; просмотров: 3650; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 8396 - | 6421 - или читать все...

Читайте также:

  1. Альтернативные источники энергии и проблемы их освоения
  2. Баланс электрической и тепловой энергии (мощности)
  3. Балансировка энергии и исцеление Центральной Души
  4. Билет № 2. Используя знания об обмене веществ и превращении энергии в организме человека, дайте научное объяснение влияния на обмен веществ гиподинамии, стрессов,
  5. БИОЛОГИЧЕСКОЕ ОРУЖИЕ. ЯДЕРНОЕ ОРУЖИЕ– боеприпасы, действие которых основано на использовании внутриядерной энергии. Ядерное оружие является самым мощным оружием массового
  6. В зависимости от способа получения ядерной энергии ядерные боеприпасы делят на ядерные и термоядерные
  7. В плотной атмосфере Урана, мощность которой 8500 км, обнаружены кольцевые образования, пятна, вихри, струйные течения, что свидетельствует о неспокойной циркуляции воздушных масс
  8. ВВЕДЕНИЕ В ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ
  9. Виды издержек для целей ценообразования. Издержки на производство и реализацию продукции представля­ют собой расход всех факторов производства (основных фондов, сы­рья, материалов, топлива, энергии,
  10. Водонапорный режим. Природным режимом залежи называют совокупность естественных сил (видов энергии), которые обеспечивают перемещение нефти или газа в пласте к забоям добывающих
  11. Возможная структура санитарных потерь при воздействии поражающих факторов ядерного взрыва мощностью 20 Кт
  12. Возобновляемые источники энергии и их ресурсы


 

54.161.77.30 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.001 сек.