Алгоритм упрощенного функционального акта

 

Реальные ФА очень сложны. Сложны модели среды, многочисленны критерии, разнообразны варианты действий. Чтобы представить алгоритм ФА, нужно упростить его до предела. На рис. 29 показана схема такого упрощенного ФА.

Рассмотрение его начнем с критериев (потребностей, чувств). Как минимум для понимания ФА необходимы четыре критерия. Первый (главный) — специфический, например голод как потребность «тела», второй — любознательность, третий — «рефлекс цели», четвертый — универсальный «тормоз» — утомление. Три последних критерия рабочие. Для каждого критерия необходимы характеристики и точки исходного состояния на них. Для голода, например, это будет зависимость чувства от количества пищи. Исходное состояние — некоторая низкая степень насыщения, оставшаяся после предыдущего приема пищи. Для критерия любознательности характеристика отражает потребность в информации, то есть зависит от числа и сложности новых моделей среды. Исходное состояние — некоторый «информационный голод». Критерий цели стимулируется от реальности цели, ее близости во времени и в соответствии с «процентом» выполнения плана. Вначале, естественно, он не действует. Критерий утомления включается от любого действия — в зависимости от его утомительности.

«Мысленные» этапы ФА — анализ, планирование — менее утомительны, но они надоедают, наскучивают. «Двигательные» этапы зависят от сопротивления объекта действия — «тормоз» от утомления может быть очень велик. По каждому виду действий — с моделями или с объектами, при восприятии или планировании — утомление отсчитывается от нуля. Значимость каждого критерия различна и задается заранее. Так, голод намного важнее, чем любознательность и удовольствие от достижения цели, но утомление в своем крайнем проявлении сравнимо с голодом.

 

Рис. 29. Алгоритм функционального акта.

 

Восприятие. Восприятие среды осуществляется рецептором, для настройки которого необходимо действие. Его мы обозначим Д1. Исходный стимул для него черпается из рабочего критерия любознательности, обеспечивающего некоторый минимальный уровень усилий. Для простоты будем считать стимул достаточным для такой настройки рецептора, чтобы получить модель среды.

В результате восприятия, как программы действия, в кратковременную память вводится модель внешней среды M1, например одного предмета или пространственной ситуации из нескольких объектов. Каждый из них представлен «фразой», состоящей из нескольких «слов» в кадрах памяти (см. рис. 17). Одно «слово» — обобщенная модель, другое — простейшая структура. В модель вводятся «буквы» настройки рецептора и координаты объекта.

Д2 — приведение объекта к стандартным размерам — осуществляется автоматически, за счет того же любопытства и не требует большого напряжения. Получается новая модель М2. Стимул при этом несколько уменьшается.

Анализ. Д3 начинает этап анализа и представляет собой программу распознавания приведенных моделей М2 путем вызова из внешней памяти моделей-эталонов МЭ, похожих на воспринятые. Для этого используются первые «буквы» каждого «слова», как в алфавитном словаре.

Д4 — выбор наиболее похожих из вызванных моделей. Они выписываются в кратковременной памяти рядом с М2 с последующим автоматическим сравнением и определением степени сходства. В результате получается новая «фраза» — модель распознанного объекта, переписанная собственными «словами» с указанием степени сходства,— М3. Любознательность (источник энергии) во время этих действий значительно уменьшается и одновременно нарастает «тормоз» — «надоело». Распознавание может быть продолжено, но для упрощения задачи ограничимся этим.

Д5 — оценка распознанного объекта как возможная «плата» для удовлетворения специальной потребности, в нашем случае — голода. Специальная «фраза» М'3, с которой связана модель распознанного объекта, вызывается из постоянной памяти и указывает степень удовлетворения потребности. Если ее подставить в характеристику главной потребности, отложив от исходной точки (см. рис. 22), можно получить максимальный стимул ЧМАКС. Он определяет основную энергию для всех последующих этапов ФА. Если насытившемуся человеку предложить невкусную пищу, то есть низкую «плату», то стимул Ч будет очень мал. ФА закончится на первых этапах — рассмотрение и анализ, которые отработаны на стимуле «любознательность». Человек не захочет напрягаться изза ерунды (об этом еще будет разговор). Сейчас предположим, что стимул весьма велик.

Планирование. Д6 — определение цели. Принцип утилитарности интеллекта предусматривает автоматическое рассмотрение любой внешней картины с точки зрения ее использования для повышения удовольствия, то есть для удовлетворения потребностей. Важнейший стимул (голод) дает достаточно энергии для первой прикидки использования объекта. Суть действия состоит в создании модели цели. Зрительно это выражается в модели объекта в том виде, каким он должен стать в результате воздействий интеллекта (например, часть структуры объекта должна быть оторвана и перенесена к «телу» или попросту — взять и откусить). Такая цель может быть выражена короткой «фразой» — часть объекта, его перемещение в пространстве к новому месту. Откуда возьмется новая модель — цель. Она есть во внешней памяти в разных вариантах «фраз», связанных с моделью «съедобного» объекта. Для нахождения такой модели нужны входные данные: обобщенная модель объекта и действия с ним. Энергия для извлечения модели из внешней памяти и переноса ее в кратковременную память черпается из стимула, определившегося в предыдущем действии. При этом стимул несколько уменьшится за счет утомления. Таким образом мы получаем новую модель — цель М4.

Д7 — выбор движения для достижения цели. Его модель М5 может быть представлена на разных уровнях обобщения. Самая общая модель — это «взять», «достать» как основное движение с «буквой» обобщения. Такая модель тоже имеется во внешней памяти в виде «фразы», где связаны модель-цель и модельдвижение. Движения задаются моделью рецепторов, заложенных в органах движения.

Д8 — определение сопротивления движению со стороны объекта — представляется как частная модель М6 некоторого качества объекта. Найти ее можно по основной модели объекта или по сочетанию этой модели с моделью действия.

Д6, Д7 и Д8 представляют собой самое упрощенное выражение этапа планирования. По существу, после каждого из этих действий должен производиться перерасчет стимулов, но для простоты эту процедуру мы объединим в одну операцию.

Д9 — новый перерасчет стимулов и «тормозов» для определения их суммы М7, который подготавливает важный этап — принятие решения. Предыдущие три действия были связаны с расходованием энергии стимула, подсчитанного в Д5 на основании величины потребности и «платы», которую может обеспечить объект, воспринятый и распознанный на первых двух этапах. За время планирования этот стимул изменился: во-первых, за счет утомления от самой процедуры расчетов, во-вторых, за счет уточнения «ценности» объекта, которая была связана с уточнением цели, в-третьих, за счет будущих усилий для запланированных движений. Последний пункт особенно важен: мы не начинаем действий, если не уверены в том, что они нам под силу.

Принятие решения. Подсчетом стимулов заканчиваются «мысленные» этапы ФА. Решение занимает промежуточное положение: с одной стороны, действия еще не начаты, а с другой — их начало уже определено, и для этого обеспечены стимулы. Они должны быть значительно сильнее, чем для предыдущих этапов, поскольку призваны обеспечить высокое напряжение моделей движений, способное преодолеть действительное, а не воображаемое сопротивление объекта, например мышечное усилие для поднятия тяжести. Важно понять, что во время восприятия и анализа стимул Ч, как функция неудовлетворенной потребности, может быть достаточно большим, но он не используется, поскольку напряжение нужно лишь для преодоления сопротивления связей, чтобы вызывать модели из внешней памяти.

Однако такое положение бывает не всегда. Стимул для действий, в том числе и для мыслительных, то есть «чистых» действий с моделями, расходуется на преодоление сопротивления связей при введении новых моделей из памяти и их активации. Это сопровождается утомлением. Оно сильно возрастает, если процесс мышления требует большого напряжения, длится непрерывно и не достигает успеха (нет решения задачи). Удовлетворения потребности при этом нет, наоборот, она активируется и стимул все более возрастает. Соответственно возрастанию стимула и противостоящего ему утомления увеличивается напряжение при низком УДК. Такое положение возникает при интенсивной умственной работе или в трудных жизненных ситуациях, вызывающих сильные чувства и не предлагающих легкого решения.

Д10 — решение. Внешне это короткий акт — включение в действие ранее составленных планов, но он весьма значителен. В момент решения необходимо скачкообразно повысить напряжение, чтобы активировать модели плана M8, поскольку нужно преодолеть сопротивление действию со стороны объекта. У человека это связано с сокращением мышц, то есть большим расходом энергии. Решение вызывает особенно сильное напряжение, когда оно бесповоротно, когда уже невозможно остановить начатое действие (пример — прыжок через ров, разрез кожных покровов при операции).

Действия. Д11 — действия в буквальном смысле слова: сокращение мышц у человека либо включение двигательных или манипуляционных устройств у ИИ.

Действия — это считывание модели плана. Она может быть задана в двух вариантах: в виде структурного образа объекта внешней среды как модельцель или в виде последовательности ощущений с рецепторов органов движения. В первом случае обратной связью является орган зрения, воспринимающий объект и сверяющий изменения, которые он претерпел, с моделью цели действий. Во втором случае рецепторы с мышц сами дают обратную связь. Однако как в том, так и в другом варианте само считывание состоит в активации моделей, непосредственно управляющих органами движения. Сами по себе они не представлены в рецепторных зонах, а выражаются только через рецепторы органов движения, но тем не менее это элементы интеллекта, такие же, как и другие. Сложные двигательные акты состоят из последовательности автоматических элементарных движений («слова» и «фразы» из «букв»).

Активность моделей действий должна быть настолько велика, чтобы органы движения, управляемые от них, были способны преодолеть сопротивление объекта воздействий. От модели плана, записанной в кратковременной памяти, поэтапно включаются модели элементарных движений, управляющие эффекторами. Одновременно рецепторами «глаза» и «мышц» воспринимается эффект производимых движений. Как и всякое восприятие, он тоже записывается в кратковременную память в виде модели М9. Таким образом, в кратковременной памяти активно функционирует несколько параллельных моделей: «старые» модели плана, «новые» модели объекта, измененного действием, и модели с рецепторов «мышц», показывающие их сокращения и усилия. Не представлены, но есть модели самих движений — как последовательность активации эффекторов. Эти модели, доведенные до высокой активности многократными повторениями, в дальнейшем могут стать основой автоматических сложных движений. Такими являются любые хорошо заученные двигательные акты, например произнесение слов. Разговаривая, мы просто «включаем» модели слов, а орган слуха воспринимает произносимое и выполняет роль обратной связи (в отличие от имитации чужого произношения, когда мы «считываем» звуковой образ).

Модели выполненных действий, по крайней мере две из них — изменение объекта и мышечных усилий, дают материал для чувственного контроля действий, корректируют планы получения «платы» и утомления.

Д12 — подсчет уровня чувств, стимулов и «тормозов» после выполнения первого этапа движений (предположим, что весь план был разбит на 2—3 этапа). Для этого нужно определить, в какой степени модель измененного действием объекта М10 соответствует модели — цели данного этапа действий. Недовыполнение плана уменьшает реальность всего ФА, снижает активность потребности и уменьшает стимул. С другой стороны, уже определено, каково действительное сопротивление и насколько оно соответствует «силам» эффектора. От этого зависит действительное утомление, то есть величина «тормоза», которая вычитается из стимула для определения их суммы. Если план выполнен, этапный эффект получен, а сопротивление оказалось меньше предполагавшегося, стимул возрастает и следующий этап может быть выполнен быстрее. Если же это невозможно вследствие особенностей объекта, ФА в целом может вызвать в дальнейшем большее удовлетворение. При более сильном сопротивлении «тормоз» может полностью нейтрализовать стимул и возникнет необходимость в прекращении действия, ФА останется незаконченным. Однако в этом случае включается другой «рабочий» стимул — «рефлекс цели». Невыполнение плана, отдаление цели или появление обстоятельств, угрожающих ее осуществлению, являются для него «платой» (довольно странной, но это так), уменьшающей чувство приятного, но побуждающей к деятельности, как и всякая угроза. Он суммируется с положительным стимулом надежды на истинную «плату», позволяет пересилить «тормоз» и продолжать действия, то есть перейти к их следующему этапу, который осуществляется по тем же принципам.

Уровень душевного комфорта в процессе выполнения действий зависит от их эффективности. При затруднениях он оказывается ниже предполагавшегося, если же сопротивление было переоценено,— то выше.

Д13 — завершение ФА. Оно сводится к подведению итогов, определению окончательных чувств и УДК, но в этом и состоит его важность.

Предположим, что план выполнен полностью, «плата» получена, и это прежде всего резко изменяет главное чувство. Точка на характеристике потребности (в нашем примере — голод) перемещается в зону «приятного» и соответственно стимул для действия уменьшается до нуля. С другой стороны, накопившееся утомление представляет неприятный компонент чувственной сферы и понижает сумму чувств, то есть УДК.

 

Рис. 30. Характеристика «рефлекса цели»: ЧЦ — стимул цели в зависимости от степени выполнения плана.

 

Третий, снова приятный, компонент дает «рефлекс цели». Он тем значительней, чем больше было преодоленных трудностей. Характеристика этого компонента показана на рис. 30. В ходе выполнения ФА «утомились», или «прискучили», или «насытились» обе рабочие потребности — любознательности и цели, следовательно, их значимость уменьшилась. Так закончился ФА, представленный в самом упрощенном виде.

Воспроизведение простого ФА в алгоритмическом интеллекте, мне кажется, не будет трудным. Потребности и их чувства, то есть критерии, задаются в виде «центров» со своими характеристиками и постоянно находятся в оперативной памяти. То же самое касается центров — моделей настройки рецепторов. Они всегда обладают хотя бы минимальной активностью. Направление рецепторов на цель и их дополнительное активирование включаются как действие, модель которого («куда направить взгляд») всегда имеется в оперативной памяти, поскольку она часто используется. Компоненты этого действия — настройка и активация рецепторов. Действие дает «первичную картину», которая тут же перекодируется цифровым кодом по особой подпрограмме. Так получается цифровая первичная модель. Этап «анализ» сводится к извлечению цифровых моделей из длительной памяти и сравнению их с первичной моделью. В результате создается вторичная модель. Планирование осуществляется по тем же принципам. Пересчет чувств, УДК, определение стимулов и «тормозов» производится после каждого этапа. Построив планы и получив достаточный суммарный стимул, АИ «принимает решение» — включает считывание плана действий. Для этого цифровая модель перекодируется в сигналы, управляющие органами движения — эффекторами. Они изменяют структуру объекта согласно «модели цели», полученной при планировании. Контроль за изменениями структуры объекта осуществляется рецептором зрения, напряжение мышц при работе оценивается специальными рецепторами, полученные картины кодируются и сравниваются с планом. В промежутках между отдельными движениями пересчитываются чувства и стимулы. «Отработанные» модели находятся в оперативной памяти до тех пор, пока активность их снижается, согласно характеристике, до определенного порога, после чего они стираются. Результат ФА в виде основных моделей — «первичной картины», последовательности действий и картины объекта после осуществления ФА — переносится в длительную память. Основная трудность алгоритмизации даже простого ФА состоит в перекодировании пространственной структуры объекта.

 

«Круги» восприятия

 

В предыдущем описании ФА был предложен наиболее легкий процесс распознавания моделей — по полному совпадению с эталонами. В действительности это не так. Сложные структуры, воспринятые рецепторами и запечатленные в кратковременной памяти как первичная модель, почти никогда не имеют во внешней памяти точного аналога. Поэтому распознавание всегда носит вероятностный характер. Модель объекта представлена в нескольких кадрах, в которых запечатлены его образы с разной степенью обобщенности и некоторое количество деталей. Сравнение идет по нисходящей — от самых обобщенных моделей до подробностей. При этом требуются усилия — стимулы, поскольку нужно вызывать из памяти все новые модели — эталоны. Усилия утомляют, накапливаются «тормозы», стимулы любознательности ограничены, поэтому сравнение идет только до уравнивания стимулов и «тормозов». При этом не достигается полное распознавание объекта со всеми его качествами, а происходит лишь приблизительное опознание. Как уже говорилось, есть механизм (программа) учета степени вероятности. Этот показатель представляет «вход» для любознательности, так как всякое нераспознанное — в целом или в частностях — является новым и интригующим. Во внешней памяти у развитого интеллекта есть множество вариантов объектов с разным набором деталей, имеющих равное значение для разных целей. Поэтому возможно запоминание нескольких вариантов «своих моделей», соответствующих «первичной модели» с разной степенью вероятности.

Какая точность нужна. И все ли необходимые для ФА детали содержатся в первичной модели.

Точность — это детали и качества. Некоторые из них являются значимыми качествами-критериями. Именно они воздействуют на центр потребности, определяют величину возможной «платы», которую представляет объект. Пример: зеленое или спелое яблоко — качество степени съедобности, в разной мере значимое для сытого и голодного человека. Его нужно точно распознать. Отсюда следует, что предел необходимой точности исследования и распознавания определяет задачу поиска качеств, значимых для данной потребности. Для удовлетворения любознательности достаточны новизна и точность сами по себе (скажем, рябина, а не калина). Для специальных потребностей нужны «избранные» детали. При первом нецеленаправленном осмотре их можно и не заметить.

Итак, первый «круг» восприятия и распознавания действует за счет стимула любознательности и дает нам приблизительную «первичную модель», которая выявляет вероятностное совпадение с не очень подробными моделями-эталонами. Второй пункт анализа как этапа ФА направлен на определение ценности объекта для удовлетворения специальной потребности и выдвигает новые задачи. Степень точности модели может оказаться недостаточной, потому что специальная потребность (чувство) предусматривает некоторые значимые для нее детали. Как только ориентировочно, по неточным моделям, определяется ценность объекта, сразу же начинается второй «круг» — целенаправленное исследование его. Возбуждение специфической потребности («голод») при восприятии объекта вызывает добавочное действие после Д4. Оно состоит в том, что из внешней памяти по связям (адресам) потребности вызываются детали, которыми должен обладать объект, чтобы удовлетворить «голод». Во временную память вводятся «фразы» вариантов объекта, в разной степени ценных как «плата». С ними сравнивается имеющаяся уже первичная модель и обнаруживается, во-первых, ее недостаточно а во-вторых, выявляются нужные детали, которые следует поискать в объекте, чтобы повысить вероятность «платы». Для этого включается новое действие — настройка рецептора с целью специального поиска нужной детали. В результате исследования появляется «усовершенствованная» первичная модель, которая снова подвергается анализу. Распознавание определяет, есть ли в ней искомая деталь, и если таковой нет, это понижает «ценность» объекта как «платы», что сказывается на последующем перерасчете чувств и стимулов. Модель цели на следующем этапе тоже может измениться, поскольку изменилась первичная модель.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: