Круговая (эллиптическая) и спиральная развертки

Для получения круговой развертки гармоническое напряжение

u=Usinωt подводится к фазорасщепляющей (на 900)цепи RC, с которой подаются на обе пары пластин напряжения uх=Uхsinωt и uy=Uysin(ωt+π/2).

Эти напряжения создают на экране трубки фигуру Лиссажу в виде эллипса или окружности. По виду этой фигуры развертку называют эллиптической или круговой

Круговая развертка получается при одинаковых максимальных отклонениях луча по горизонтали и по вертикали. Чтобы облегчить выполнение этого условия, элементы фазорасщепляющей цепи должны удовлетворять равенству R=1/ωC. Точная установка линии развертки в виде окружности достигается регулировкой сопротивления резистора R. При круговой развертке луч совершает один оборот за время, равное периоду развертывающего напряжения, а количество оборотов в секунду численно равно частоте развертывающего напряжения в герцах. Исследуемое напряжение подается по каналу Z на модулятор трубки или на второй анод. В первом случае осциллограмма имеет вид штриховой окружности, во втором – зубчатой. Применение круговой развертки обеспечивает относительное увеличение времени наблюдения и уменьшение погрешности отсчетов. Еще большее увеличение времени наблюдения получается при спиральной развертке. Спиральную развертку можно осуществить одновременным воздействием на амплитуды напряжения круговой развертки периодическим пилообразным напряжением; амплитуды будут изменяться во времени по линейному закону от 0 до Ux и Uy, а луч будет описывать архимедову спираль. Длительность пилообразного напряжения должна быть кратна периоду гармонического напряжения круговой развертки, в противном случае неподвижную осциллограмму получить невозможно. Спиральная развертка часто осуществляется в ждущем режиме.                      

      Виды синхронизации: Синхронизирующее устройство предназначено для принудительной установки периода (или длительности) развертки, равного или кратного периоду (или длительности) исследуемого сигнала. В режиме ждущей развертки синхронизация осуществляется коротким запускающим импульсом, который формируется из исследуемого сигнала или напряжения внешнего источника. Для этого предусматривается усилитель синхронизирующего напряжения и триггер, формирующий запускающие импульсы; при такой схеме запуск генератора развертки не зависит от формы запускающих сигналов. Иногда триггер в цепи синхронизации отсутствует, тогда на выходе усилителя предусматривается дифференцирующая цепочка для получения коротких запускающих импульсов. На выходе усилителя обеспечивается необходимая величина и полярность этих импульсов независимо от величины и полярность их на входе. В большинстве современных осциллографов генератор развертки имеет в своем составе триггер управления, воздействуя на который можно осуществить синхронизацию и в режиме непрерывной развертки. В некоторых осциллографах генераторы развертки работают в автоколебательном режиме, и для их синхронизации в схему вводится напряжение Uсин синхронизирующей частоты. Синхронизация тем лучше, чем частота генератора развертки ближе к частоте напряжения синхронизации. Синхронизация достигается и при кратности частоты синхронизации, т.е. когда последняя в целое число раз больше частоты генератора развертки. Такая синхронизация называется синхронизацией на субгармониках.       Устойчивость синхронизации зависит от значения синхронизирующего напряжения: нужно устанавливать минимальное, при котором осциллограмма неподвижна. Синхронизация периодической развертки осуществляется исследуемым сигналом, напряжение внешнего источника или напряжением питающей сети. Переход от одного вида синхронизации к другому осуществляют переключением входа синхронизации на одно из трех положений: "Внутренняя", "внешняя" или "от сети".

Наиболее употребительной является внутренняя синхронизация, напряжение для которой снимается с усилителя канала вертикального отклонения. При этом создаются наиболее благоприятные условия наблюдения, так как сигнал даже при нестабильности его частоты "ведет" за собой частоту развертки и осциллограмма остается неподвижной. Синхронизация от сети используется для исследования процессов, частота которых равна или кратна 50 Гц.

18.    Цифровой осциллограф: назначение, структурная схема, принцип действия

Предназначен для визуального наблюдения электрических сигналов и измерения их параметров. Он отличается большим входным сопротивлением, высокой чувствительностью, пренебренежимо малой инерционностью и универсальностью.

Познакомимся с устройством и особенностями работы цифрового осциллографа на примере двухлучевого осциллографа С9-8. На рис. 1 представлена его блок-схема. Исследуемый сигнал поступает на вход усилителя (усилителя А или усилителя Б), далее преобразуется в цифровой код аналого-цифровым преобразователем (АЦП) и в цифровом виде запоминается блоком памяти (ЗУ). Информация из памяти может быть «высвечена» в виде привычной осциллограммы на дисплее прибора (дисплей ЭЛТ). Имеется возможность независимого масштабирования по амплитуде и времени, что позволяет выводить на экран как весь записанный в память сигнал, так и отдельные временные фрагменты.

Рис. 1. Блок-схема цифрового осциллографа

С помощью системы маркеров на дисплей осциллографа выводятся численные значения времени и напряжения в выбранных на экране точках осциллограммы. Всеми узлами прибора управляет встроенная ЭВМ (микропроцессор).

Цифровой осциллограф кроме штатных сервисных удобств электронно-лучевых осциллографов (ждущий запуск, внешняя синхронизация, задержка запуска, многоканальность и т.д.) имеет свои, присущие только ему, возможности: цифровой отсчет и неограниченное время хранения информации, одновременное расположение в памяти нескольких осциллограмм, программное управление и возможность математической обработки полученных данных внешними ЭВМ и т.п. В частности, одним из пользовательских удобств является так называемая «антизадержка» (или опережение), т.е. развертку осциллографа по внешнему запуску (или в ждущем режиме) можно как бы запустить за некоторое время до прихода запуска. Такой «прием» осуществляется благодаря возможности циклической непрерывной записи поступающих данных в память осциллографа, и сигнал запуска является в действительности сигналом «стоп» с определенной задержкой. Поясним это несколько подробнее. Если для записи данных в цифровом осциллографе имеется М ячеек памяти (С9-8 содержит 2048 ячеек памяти), а время между отдельными измерениями при оцифровке сигнала t (период дискретизации АЦП), то можно запомнить осциллограмму длительностью до Mt. В режиме непрерывной циклической записи поступающая информация записывается вначале в ячейку N1, затем в N2, далее в N3... в N(m – l), в Nm; затем снова в N1, далее в N2 и т.д., пока включен этот режим. Следовательно, при непрерывной циклической записи в любой момент времени Т в памяти находится осциллограмма сигнала, последовательно от момента времени (Т – Mt) до Т. Антизадержка запуска реализуется следующим образом. При включении осциллографа в ждущем режиме включается непрерывная циклическая запись в память оцифрованных входных напряжений с установленными интервалами дискретизации t и ожидается синхроимпульс для «запуска» развертки. После прихода импульса синхронизации в момент времени Т0 можно продолжить запись в течение tраз(tраз < Mt), при этом в памяти прибора окажется осциллограмма от момента времени T0 – (Mt – tраз) до Т0+Траз т.е. реализуется опережение запуска развертки по отношению к моменту прихода синхроимпульса Т0 на величину (Mt – tpaз). Отметим, что в осциллографах выбирается требуемое опережение – t0, а длительность развертки подсчитывается автоматически tpaз = Mt – t0. Наличие опережения позволяет фиксировать физические величины с «предысторией», делает более удобным изучение процессов с сигналом запуска как следствием интересуемых явлений. Например, при изучении электрических пробоев, различных взрывов и т.п. интересует начальный момент развития процесса, в это время все изменения очень малы и могут возникнуть проблемы с устойчивой синхронизацией запуска осциллографа. Используя в качестве синхроимпульса развившийся процесс (пробой, взрыв и т.п.), выбрав подходящее опережение, можно уверенно фиксировать зарождение процессов, фронты импульсов и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: