Программное обеспечение систем управления.Классификация программных средств систем управления

           технологическими процессами

В типовой архитектуре SCADA-системы явно просматриваются два уровня: уровень локальных контроллеров, взаимодействующих с объектом управления посредством датчиков и исполнительных устройств; уровень оперативного управления технологическим процессом, основными компонентами которого являются серверы, рабочие станции операторов/диспетчеров, АРМ специалистов. 

Каждый из этих уровней функционирует под управлением специализированного программного обеспечения (ПО). Разработка этого ПО или его выбор из предлагаемых в настоящее время на рынке программных средств зависит от многих факторов, прежде всего от решаемых на конкретном уровне задач.

Различают базовое и прикладное программное обеспечение (рис.1).

Рис. 1. Классификация программных средств системы управления.

Ø Базовое ПО включает в себя различные компоненты, но основным из них является операционная система (ОС) программно-технических средств АСУТП. Каждый уровень АСУТП представлен «своими»программно-техническими средствами: на нижнем уровне речь идет о контроллерах, тогда как основным техническим средством верхнего уровня является компьютер. В соответствии с этим в кругу специалистов появилась и такая классификация: встраиваемое и настольное программное обеспечение.

Очевидно, требования, предъявляемые к встраиваемому и настольному ПО, различны. Контроллер в системе управления наряду с функциями сбора информации решает задачи автоматического непрерывного или логического управления. В связи с этим к нему предъявляются жесткие требования по времени реакции на состояние объекта и выдачи управляющих воздействий на исполнитель­ные устройства. Контроллер должен гарантированно откликаться на изменения состояния объекта за заданное время.

Средства, ориентированные на обеспечение интерфейса оператора/ диспетчера с системой управления – SCADA -системы(SupervisoryControlAndDataAcquisition - диспетчерское управление и сбор данных).

· Контроллеру требуется программа, в соответствии с которой он взаимодействует с объектом. В одних случаях речь идет только о сборе данных с объекта, в других - о логическом управлении (например, выполнении блокировок). Наконец, одно из основных применений контроллера - реализация функций непрерывного управления отдельными параметрами или технологическим аппаратом (процессом) в целом. 

Стандартом МЭК 1131-3 определены пять языков программирования контроллеров: три графических (LD, FBD, SFC) и два текстовых (ST, IL).

LD (LadderDiagram) - графический язык диаграмм релейной логики. Язык LD применяется для описания логических выражений различного уровня сложности.

FBD (FunctionBlockDiagram) - графический язык функциональных блоковых диаграмм. Язык FBD применяется для построения комплексных процедур, состоящих из различных функциональных библиотечных блоков - арифметических, тригонометрических, регуляторов и т.д.).

SFC (SequentialFunctionChart) - графический язык последовательных функциональных схем. Язык SFC предназначен для использования на этапе проектирования ПО и позволяет описать «скелет» программы - логику ее работы на уровне последовательных шагов и условных переходов.

ST (StructuredText) - язык структурированного текста. Это язык высокого уровня, по мнемонике похож на Pascal и применяется для разработки процедур обработки данных.

IL (Instruction List) - языкинструкций. Это язык низкого уровня класса ассемблера и применяется для программирования эффективных, оптимизированных процедур.

 В конце 90-х годов появились открытые программные продукты ISaGRAF, InControl (Wonderware), Paradym (Intellution), предназначенные для разработки, отладки и исполнения программ управления как дискретными, так и непрерывными процессами.Широкое применение в России нашел пакет ISaGRAF французской компании CJInternational.

Основные возможности пакета: Поддержка всех пяти языков стандарта МЭК 1131-3 плюс реализация языка FlowChart как средства описания диаграмм состояний. При этом ISaGRAF позволяет смешивать программы и процедуры, написанные на разных языках, а также вставлять кодовые последовательности из одного языка в коды, написанные на другом языке.

- Наличие многофункционального отладчика, позволяющего во время

работы прикладной задачи просматривать состояние программного

кода, переменных, программ и многое другое.

- Поддержка различных протоколов промышленных сетей.

- Реализация опций, обеспечивающих открытость системы для доступа к внутренним структурам данных прикладной ISaGRAF-задачи, а также возможность разработки драйверов для модулей ввода/вывода, разработанных самим пользователем, и возможность переноса ISaGRAF-ядра на любую аппаратно-программную платформу.

- Набор драйверов для работы с контроллерами различных фирм-производителей: PEP ModularComputers, MotorolaComputerGroup и др.

- Наличие дополнительных интерактивных редакторов для описания переменных, констант и конфигураций ввода/вывода.

- Встроенные средства контроля за внесением изменений в программный код ISaGRAF-приложения и печати отчетов по разработанному проекту с большой степенью детализации, включая печать таблиц перекрестных ссылок для программ и отдельных переменных.

- Полное документирование этапов разработки.

· Программные средства верхнего уровня АСУТП (SCADA-пакеты) предназначены для создания прикладного программного обеспечения пультов контроля и управления, реализуемых на различных компьютерных платформах и специализированных рабочих станциях. SCADA - пакеты позволяют при минимальной доле программирования на простых языковых средствах разрабатывать многофункциональный интерфейс, обеспечивающий оператора/диспетчера не только полной информацией о технологическом процессе, но и возможностью им управлять.В своем развитии SCADA - пакеты прошли тот же путь, что и программное обеспечение для программирования контроллеров. На начальном этапе (80-е годы) фирмы-разработчики аппаратных средств создавали собственные (закрытые) SCADA-системы, способные взаимодействовать только со «своей» аппаратурой. Начиная с 90-х годов, появились универсальные (открытые) SCADA - программы. Понятие открытости является фундаментальным, когда речь идет о программно-аппаратных средствах для построения многоуровневых систем автоматизации. Более подробно об этом будет сказано ниже.Сейчас на российском рынке присутствует несколько десятков открытых SCADA-пакетов, обладающих практически одинаковыми функциональными возможностями. Но это совсем не означает, что любой из них можно с одинаковыми усилиями (временными и финансовыми) успешно адаптировать к той или иной системе управления, особенно, если речь идет о ее модернизации. Каждый SCADA-пакет является по-своему уникальным, и его выбор для конкретной системы автоматизации, обсуждаемый на страницах специальной периодической прессы почти на протяжении последних десяти лет, по-прежнему остается актуальным.До недавнего времени задача регистрации информации в реальном времени могла быть решена либо на уровне программного обеспечения концентратора (контроллера верхнего уровня), либо на уровне SCADA-системы. При этом речь идет о больших потоках данных о процессе, поступающих от большого количества датчиков (нескольких сот или тысяч) в реальном масштабе времени и с высокой частотой (периоды опроса – порядка секунд и даже долей секунд). На уровне АСУТП эта информация нужна для оперативного управления технологическим процессом.

Данные технологических процессов специфичны. Они, как правило, могут быть представлены в виде временных рядов «значение – время». Для их сбора и хранения практически любой SCADA-пакет имеет в своем составе подсистему регистрации исторических данных (архив) с возможностью последующей выборки требуемых для анализа данных и их представления в виде трендов.

Но такие архивы не предназначены для длительного хранения больших объемов информации. К тому же, речь здесь идет о такназываемыхлокальныхархивах. АрхивSCADA-пакета хранит информацию о переменных лишь одного конкретного технологического процесса. Но предприятие имеет в своем составе целый ряд технологических процессов, системы управления которыми выполнены, как правило, на различной программно-аппаратной платформе. В получении оперативных и объективных технологических данных сегодня заинтересованы практически все службы предприятия. Однако характер необходимой информации различен для различных уровней управления. На верхнем уровне (АСУП) нужна только интегрированная (предварительно подготовленная) информация о технологических процессах (данные типа «нарастающим итогом», средних значений за определенные промежутки времени, общее количество произведенных продуктов и т.д.). Для хранения такой информации хорошо адаптированы базы данных реляционного типа (РБД). Данные в этих базах статичны, связаны многими отношениями, должны быть легко выбираемы по различным сложным критериям. Однако РБД не приспособлены для хранения огромного количества значений параметров, получаемых от SCADA-систем и накапливаемых за достаточно длительное время (до трех и более лет).В результате, информация, имеющаяся и успешно используемая в АСУТП, недоступна для верхнего уровня.Таким образом, назрела необходимость создания и внедрения в процесс управления такназываемых историческихархивов производственныхданныхили баз данных реального времени (БДРВ) масштабапредприятия.

Во - первых, такиесистемыдолжныобеспечитьсборданных с различныхисточниковпроизводственнойинформациинапредприятии(SCADA-систем, DCS-систем, лабораторныхсистем - LIMS, различных СУБД и т. п.) и ихдолговременное хранение в едином формате. Во-вторых - обеспечитьдоступ к информацииспециалистам и руководителям всех уровней и служб постандартнымпротоколам с помощьюспециализированныхклиентскихприложений.Такие системы от различных производителей (в том числе и от производителей SCADA-систем) уже появились в России и с каждым днем находят все более широкое применение. Среди них IndustrialSQLServer – компонент интегрированного пакета FactorySuite (Wonderware), iHistorian - компонент семейства IntellutionDynamics и другие.

· Существует целый ряд задач управления, не перекрываемых ни классом АСУП, ни классом АСУТП. Частично эти задачи не перекрываются из-за отсутствия возможностей программного обеспечения этих уровней системы управления. Среди них находятся и задачи, решение которых может оказать решающее влияние на эффективность предприятия в целом: диспетчеризация производства, оперативное планирование, управление качеством продукции и многие другие.

Наличие базы данных реального времени масштаба предприятия – это только лишь предпосылка для их решения (необходимое, но недостаточное условие). Ряд разработчиков инструментальных систем предлагают использовать с этой целью специальный тип программных продуктов. Это могут быть небольшие системы, предназначенные для решения отдельных типовых задач, например, системы расчета и согласования материальных балансов. Появился ряд интегрированных систем, поддерживающих, наряду с функциями хранения и представления информации, решение задач расчета тепловых и материальных балансов, планирования, оптимизации и т.п. К наиболее известным программным продуктам этого класса ПО относятсяInfoPlus компании AspenTech, «Калькулятор качества» фирмы ПЕТРОКОМ, PISystem (PlantInformationSystem) компании OSIsoft. Современное развитие информационных технологий (ИТ) создало предпосылки для успешной интеграции всех уровней управления многоуровневой системы и создания интегрированной информационной системы предприятия.

 Общая характеристика программного обеспечения SCADA

 Основные функции SCADA-систем Программное обеспечение типа SCADA предназначено для разработки и эксплуатации автоматизированных систем управления технологическими процессами. Резонно задать вопрос: а что же все-таки первично – разработка или эксплуатация? И ответ в данном случае однозначен – первичным является эффективный человеко-машинный интерфейс (HMI), ориентированный на пользователя, т. е. на оперативный персонал, роль которого в управлении является определяющей. SCADA – это новый подход к проблемам человеческого фактора в системах управления (сверху вниз), ориентация в первую очередь на человека (оператора/диспетчера), его задачи и реализуемые им функции. Такой подход позволил минимизировать участие операторов/диспетчеров в управлении процессом, но оставил за ними право принятия решения в особых ситуациях.

А что дала SCADA-система разработчикам? С появлением SCADA они получили в руки эффективный инструмент для проектирования систем управления, к преимуществам которого можно отнести: высокую степень автоматизации процесса разработки системы управления; участие в разработке специалистов в области автоматизируемых процессов (программирование без программирования);реальное сокращение временных, а, следовательно, и финансовыхзатрат на разработку систем управления.

           Раньше в операторной (диспетчерской) находился щит управления (отсюда - щитовая). Для установок и технологических процессов с несколькими сотнями параметров контроля и регулирования длина щита могла достигать нескольких десятков метров, а количество приборов на них измерялось многими десятками, а иногда и сотнями. Среди этих приборов были и показывающие (шкала и указатель), и самопишущие (кроме шкалы и указателя еще и диаграммная бумага с пером), и сигнализирующие. В определенное время оператор, обходя щит, записывал показания приборов в журнал. Так решалась задача сбора и регистрации информации.

В приборах, обслуживающих регулируемые параметры, имелись устройства для настройки задания регулятору и для перехода с автоматического режима управления на ручное (дистанционное). Здесь же, рядом с приборами, находились многочисленные кнопки, тумблеры и рубильники для включения и отключения различного технологического оборудования. Таким образом решались задачи дистанционного управления технологическими параметрами и оборудованием.

Над щитом управления (как правило, на стене) находилась мнемосхема технологического процесса с изображенными на ней технологическими аппаратами, материальными потоками и многочисленными лампами сигнализации зеленого, желтого и красного (аварийного) цвета. Эти лампы начинали мигать при возникновении нештатной ситуации. В особо опасных ситуациях предусматривалась возможность подачи звукового сигнала (сирена) для быстрого предупреждения всего оперативного персонала. Так решались задачи, связанные с сигнализацией нарушений технологического регламента (отклонений текущих значений технологических параметров от заданных, отказа оборудования).

С появлением в операторной/диспетчерской компьютеров было естественным часть функций, связанных со сбором, регистрацией, обработкой и отображением информации, определением нештатных (аварийных) ситуаций, ведением документации, отчетов, переложить на компьютеры. Еще во времена первых управляющих вычислительных машин с монохромными алфавитно-цифровыми дисплеями на этих дисплеях усилиями энтузиастов-разработчиков уже создавались «псевдографические» изображения - прообраз современной графики. Уже тогда системы обеспечивали сбор, обработку, отображение информации, ввод команд и данных оператором, архивирование и протоколирование хода процесса.

Появление УВМ, а затем и персональных компьютеров вовлекло в процесс создания операторского интерфейса программистов. Они хорошо владеют компьютером, языками программирования и способны писать сложные программы. Для этого программисту нужен лишь алгоритм (формализованная схема решения задачи). Но беда в том, что программист, как правило, не владеет технологией, не «понимает» технологического процесса. Поэтому для разработки алгоритмов надо было привлекать специалистов-технологов, например, инженеров по автоматизации. Выход из этой ситуации был найден в создании методов «программирования без реального программирования», доступных для понимания не только программисту, но и инженеру-технологу. В результате появились программные пакеты для создания интерфейса «человек-машина» (Man/HumainMachineInterface, MMI/HMI). За рубежом это программное обеспечение получило название SCADA (SupervisoryControlAndDataAcquisition – супервизорное/диспетчерское управление и сбор данных), так как предназначалось для разработки и функциональной поддержки АРМов операторов/диспетчеров в АСУТП. А в середине 90-х аббревиатура SCADA (СКАДА) уверенно появилась и в лексиконе российских специалистов по автоматизации.

Архитектурное построение SCADA-систем На начальном этапе развития (80-е годы) каждый производитель микропроцессорных систем управления разрабатывал свою собственную SCADA-программу. Такие программы могли взаимодействовать только с узким кругом контроллеров, и по всем параметрам были закрытыми (отсутствие набора драйверов для работы с устройствами различных производителей и средств их создания, отсутствие стандартных механизмов взаимодействия с другими программными продуктами и т. д.).

C появлением концепции открытых систем (начало 90-х) программные средства для операторских станций становятся самостоятельным продуктом.

· Одной из первых задач, поставленных перед разработчиками SCADA, стала задача организации многопользовательских систем управления, то есть систем, способных поддерживать достаточно большое количество АРМ пользователей (клиентов). В результате появилась клиент - серверная технология или архитектура.

Клиент - серверная архитектура характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети. По такой схеме могут быть построены системы управления технологическими процессами, системы обработки данных на основе СУБД и т. п.

                                           Рис. 2.1. Клиент-серверная архитектура.

Клиент-серверная архитектура предполагает, что вся информация о технологическом процессе от контроллеров собирается и обрабатывается на сервере ввода/вывода (сервер базы данных), к которому по сети подключаются АРМ клиентов. Под станцией-сервером в этой архитектуре следует понимать компьютер со специальным программным обеспечением для сбора и хранения данных и последующей их передачи по каналам связи оперативному персоналу для контроля и управления технологическим процессом, а также всем заинтересованным специалистам и руководителям. По определению сервер является поставщиком информации, а клиент – ее потребителем. Таким образом, рабочие станции операторов/диспетчеров, специалистов, руководителей являются станциями-клиентами. Обычно клиентом служит настольный ПК, выполняющий программное обеспечение конечного пользователя. ПО клиента - это любая прикладная программа или пакет, способные направлять запросы по сети серверу и обрабатывать получаемую в ответ информацию. Естественно, функции клиентских станций, а, следовательно, и программное обеспечение, различны и определяются функциями рабочего места, которое они обеспечивают. Количество операторских станций, серверов ввода/вывода (серверов БД) определяется на стадии проектирования и зависит, прежде всего, от объема перерабатываемой в системе информации. Для небольших систем управления функции сервера ввода/вывода и станции оператора (HMI) могут быть совмещены на одном компьютере. В сетевых распределенных системах средствами SCADA/HMI стало возможным создавать станции (узлы) различного функционального назначения: станции операторов/диспетчеров, серверы с функциями HMI, “слепые” серверы (без функций HMI), станции мониторинга (только просмотр без прав на управление) для специалистов и руководителей и другие.

Важным аспектом в структурном построении сетевых систем управления является структура базы данных реального времени (централизованная или распределенная).

Каждая из структур в SCADA/HMI-системах реализуется разными разработчиками по-разному. От реализации существенно зависят эффективность обеспечения единства и целостности базы данных, ее надежность, возможности модификации и т.д.В одних случаях для доступа к данным на компьютере-клиенте создается «своя» база данных, копируемая с удаленных серверов. Дублирование данных может привести к определенным проблемам с точки зрения целостности базы данных и производительности системы управления. При модификации базы данных с такой организацией, например, при введении дополнительной переменной потребуются изменения в каждой сетевой копии, использующей эту переменную.В других случаях компьютерам-клиентам не требуются копии баз данных. Они получают необходимую им информацию по сети от сервера, в задачу которого входит подержание базы данных. Серверов может быть несколько, и любая часть данных хранится только в одном месте, на одном сервере. Поэтому и модификация базы данных производится только на одном компьютере – сервере базы данных, что обеспечивает ее единство и целостность. Такой подход к структурному построению системы снижает нагрузку на сеть и дает еще целый ряд преимуществ.С точки зрения структурного построения SCADA-пакетов различают:системы, обеспечивающие полный набор базовых функций HMI;системы, состоящие из модулей, реализующих отдельные функции HMI. Системы, обеспечивающие полный набор базовых функций, могут комплектоваться дополнительными опциями, реализующими необязательные в применении функции контроля и управления.

Во втором случае система создается полностью модульной (сервер ввода/вывода, сервер алармов, сервер трендов, и т.д.). Для небольших проектов все модули могут исполняться на одном компьютере. В проектах с большим количеством переменных модули можно распределить на несколько компьютеров в разных сочетаниях. Вариант клиент-серверной архитектуры такой системы представлен на рис. 2.2.

В клиент-серверной архитектуре системы управления, представленной на рис. 2.2, функции сбора и хранения данных, управления алармами и трендами распределены между тремя серверами. Функция HMI реализуется на станциях-клиентах.

 

                                        Рис. 2.2. Архитектура модульнойSCADA.

 

Например, SCADA Citect имеет в своем составе пять функциональных модулей (серверов или клиентов):

§ I/O - сервер ввода/вывода. Обеспечивает передачу данных между

физическими устройствами ввода/вывода и другими модулями Citect.

§ Display - клиент визуализации. Обеспечивает операторский интерфейс: отображение данных, поступающих от других модулей Citect, и управление выполнением команд оператора.

§ Alarms - сервер алармов. Отслеживает данные, сравнивает их с

допустимыми пределами, проверяет выполнение заданных условий и

отображает алармы на соответствующем узле визуализации.

§ Trends - сервер трендов. Собирает и регистрирует трендовую информацию

Reports - сервер отчетов.

§ В одной сети можно использовать только один сервер алармов, сервер трендов и сервер отчетов.

§ SCADA как открытая система Распространение архитектуры «клиент-сервер» стало возможным благодаря развитию и широкому внедрению в практику концепции открытых систем. Главной причиной появления и развития концепции открытых систем явились проблемы взаимодействия программно-аппаратных средств в локальных компьютерных сетях. Решить эти проблемы можно было только путем международной стандартизации программных и аппаратных интерфейсов.

Концепция открытых систем предполагает свободное взаимодействие программных средств SCADA с программно-техническими средствами разных производителей. Это актуально, так как для современных систем автоматизации характерна высокая степень интеграции большого количества компонент. В системе автоматизации кроме объекта управления задействован целый комплекс программно-аппаратных средств: датчики и исполнительные устройства, контроллеры, серверы баз данных, рабочие места операторов, АРМы специалистов и руководителей и т. д. (рис. 2.3). При этом в одной системе могут быть применены технические средства разных производителей.

Рис. 2.3. Интеграция SCADA в систему управления.

Очевидно, что для эффективного функционирования в этой разнородной среде SCADA-система должна обеспечивать высокий уровень сетевого взаимодействия. Реализация этой задачи требует от SCADA-системы наличия типовых протоколов обмена с наиболее популярными промышленными сетями, такими, как Profibus, ControlNet, Modbus и другими.

С другой стороны, SCADA-системы должны поддерживать интерфейс и со стандартными информационными сетями (Ethernet и др.) с использованием стандартных протоколов (TCP/IP и др.) для обмена данными с компонентами распределенной системы управления.

Практически любая SCADA-система имеет в своем составе базу данных реального времени и подсистему архивирования данных. Но подсистема архивирования не предназначена для длительного хранения больших массивов информации (месяцы и годы). Информация в ней периодически обновляется, иначе для нее просто не хватит места. Рассматриваемый здесь класс программного обеспечения (SCADA - системы) предназначен для обеспечения текущей и архивной информацией оперативного персонала, ответственного за непосредственное управление технологическим процессом.

Информация, отражающая хозяйственную деятельность предприятия (данные для составления материальных балансов установок, производств, предприятия в целом и т. п.), хранится в реляционных базах данных (РБД) типа Oracle, Sybase и т. д. В эти базы данных информация поставляется либо с помощью ручного ввода, либо автоматизированным способом (посредством SCADA-систем). Таким образом, выдвигается еще одно требование к программному обеспечению SCADA - наличие в их составе протоколов обмена с типовыми базами данных.

· Программное обеспечение SCADA должно взаимодействовать с контроллерами для обеспечения человеко-машинного интерфейса с системой управления (рис. 2.3). К контроллерам через модули ввода/вывода подключены датчики технологических параметров и исполнительные устройства (на рис. 2.3 не показаны).Информация с датчика записывается в регистр контроллера. Для ее передачи в базу данных SCADA-сервера необходима специальная программа, называемая драйвером. Драйвер, установленный на сервере, обеспечивает обмен данными с контроллером по некоторому физическому каналу. Но для реализации обмена необходим и логический протокол.После приема SCADA-сервером сигнал попадает в базу данных, где производится его обработка и хранение. Для отображения значения сигнала на мониторе рабочей станции оператора информация с сервера должна быть передана по сети клиентскому компьютеру. И только после этого оператор получит информацию, отображенную изменением значения, цвета, размера, положения и т. п. соответствующего объекта операторского интерфейса.Большое количество контроллеров с разными программно- аппаратными платформами и постоянное увеличение их числа заставляло разработчиков включать в состав SCADA-системы большое количество готовых драйверов (до нескольких сотен) и инструментарий для разработки собственных драйверов к новым или нестандартным устройствам нижнего уровня.Для взаимодействия драйверов ввода/вывода и SCADA до недавнего времени использовались два механизма (рис. 2.4):DDE (DynamicDataExchange - динамический обмен данными); обмен по собственным (известным только фирме-разработчику) протоколам.

Рис. 2.4. Обмен информацией с помощью DDE-протокола.

Взамен DDE компания Microsoft предложила более эффективное и надежное средство передачи данных между процессами – OLE (см. ниже). А вскоре на базе OLE появился новый стандарт OPC, ориентированный на рынок промышленной автоматизации.

· ActiveX-объекты

ActiveX – это технология Microsoft, основанная на COM/DCOM (см. выше) и предназначенная для написания сетевых приложений. Она предоставляет программистам наборы стандартных библиотек, значительно облегчающих процесс кодирования.

Стандарт ActiveX позволяет программным компонентам взаимодействовать друг с другом по сети независимо от языка программирования, на котором они написаны (VisualBasic, Visual C++, BorlandDelphi, Borland C++, любые средства разработки на Java).

ActiveX обеспечивает некий «скрепляющий раствор», с помощью которого отдельные программные компоненты на разных компьютерах «склеиваются»в единую распределенную систему. Технология ActiveX включает в себя клиентскую и серверную части. Серверная часть технологии ActiveX реализована с помощью Microsoft InternetInformationServer (IIS). Клиентская технология ActiveX реализуется на машине-клиенте с помощью библиотек, поставляемых вместе с Microsoft InternetExplorer, являющимся полнофункциональным Wев-браузером (WWW - World Wide Web) и контейнером для ActiveX-элементов. Сегодня технология ActiveX успешно внедряется в системы, функционирующие на Windows-платформе. Нет сомнения, что в ближайшее время эти технологии будут использоваться и на других платформах, так как информационные технологии развиваются очень высокими темпами.

Какое же отношение технология ActiveX имеет к SCADA-системам? Разработчики SCADA-программ на платформе WindowsNT/2000/XP воспользовались этой технологией Microsoft. Сейчас уже многие SCADA являются контейнерами для ActiveX-объектов. А это значит, что огромное количество готовых к многократному использованию ActiveX-объектов, создаваемых многочисленными производителями подобного программного продукта, могут встраиваться с минимальным программированием в SCADA-приложения. И тогда процесс разработки человеко-машинного интерфейса будет напоминать работу с конструктором, заключающуюся в подборе и встраивании готовых компонентов. В режиме исполнения ActiveX-компоненты поддерживают динамический обмен данными с другими сетевыми программно-аппаратными компонентами по OPC-интерфейсу.


Пример ActiveX-объекта приведен на рис. 2.6.

Рис. 2.6. ActiveX-объект «Сводка сигнализации».

Итак, открытость программного обеспечения SCADA обеспечивается целым рядом факторов, а именно: возможностью создания собственных программных модулей  и использования программных модулей разработки других компаний; наличием специальных драйверов для связи SCADAс наиболее

популярными контроллерами разных фирм; наличием специальных инструментальных средств для создания новых драйверов; возможностью их работы в типовых операционных системах; наличием типовых программных интерфейсов (DDE, OLE, OPC, ActiveX, ODBC, SQL и др.), связывающих ПО SCADA с другими программно-аппаратными средствами системы управления, включая и СУБД.

Сейчас уже можно сказать, что современные системы SCADA/HMI хорошо структурированы и представляют собой готовые к применению и согласованные по функциям и по всем интерфейсам наборы программных продуктов и вспомогательных компонентов.

Организация доступа к SCADA-приложениям SCADA-приложения, по определению, являются потребителями технологических данных, но, с другой стороны, они должны быть и их источником. Информация со SCADA-приложений потребляется многочисленными клиентами (прежде всего, специалистами и руководителями среднего звена). Для автоматизированного доступа к информации реального времени с любого рабочего места необходимо установить компьютер, подключенный к локальной сети. Организованное таким образом автоматизированное рабочее место (АРМ) предназначено для реализации вполне определенных функций. Поэтому программное обеспечение компьютера (системное и прикладное) должно обеспечить соответствующий данному АРМ набор пользовательских услуг. К их числу можно отнести:объем предоставляемой информации;форма представления информации;реализуемые функции (только информационные или с возможностью выдачи управляющих воздействий);протяженность и надежность канала связи «источник-потребитель»;простота освоения пользователем и т.д.

В периодической прессе последних лет за системным и прикладным программным обеспечением, которое необходимо компьютеру АРМ для получения удаленного доступа к производственной информации, закрепился термин «клиентское приложение». Клиентские приложения различного типа могут предоставлять информацию в любом объеме и приемлемом для пользователя виде. Клиент-серверная организация SCADA-систем предполагает применение клиентских приложений двух типов: c возможностью передачи управляющих воздействий с клиентского приложения и чисто мониторинговые приложения. Пользователю необходимо лишь определить достаточный набор услуг.


Самыми простыми и распространенными клиентскими приложениями в настоящее время являются клиенты в локальной сети (рис. 2.7). Такие клиентские приложения в SCADA-системах традиционно объединяются с серверными приложениями протоколами локальных сетей. Часто таким протоколом является TCP/IP.

Рис. 2.7. Организация доступа к информации через локальную сеть.

Большинство современных SCADA-пакетов работает на платформах Windows 2000/NT/XP. Отсюда следует, что для организации АРМ потребуется компьютер достаточно хорошей конфигурации и лицензионное программное обеспечение SCADA.

Технология сервер/терминал Постоянное появление новых версий программного обеспечения, предъявляющих все более высокие требования к производительности клиентских ПК, привело к тому, что некоторые компании-разработчики программного обеспечения решили разработать технологию, которая бы обеспечила выполнение всех высокопроизводительных вычислений на сервере, оставляя клиентским компьютерам роль терминалов. Наиболее удачные решения предложили корпорация Microsoft (Windows 2000 TerminalServices) и компания Citrix (Metaframe). ПО Metaframe - это дополнение к Windows 2000 TerminalServices, которое дает возможность использовать на клиентских компьютерах операционные системы, отличные от Windows, например, Linux или Macintosh.

Технология сервер/терминал поддерживает режим клиентских сессий, когда один сервер обслуживает несколько клиентов, функционирующих независимо друг от друга. При этом каждый терминал получает свой ресурс: память, время центрального процессора, доступ к дискам сервера и приложениям. Когда клиент запускается, терминальный сервер регистрирует его, предоставляя доступ к ресурсам сервера. WindowsTerminalServer создает виртуальный дисплей, изображение которого отображается на локальном мониторе. Операции ввода, активизируемые клиентом с клавиатуры и мыши, обслуживаются сервером. Добавление нового клиента заключается лишь в подключении нового терминала к сети. Терминальные пользователи имеют доступ к данным, мнемосхемам, трендам, алармам с возможностью обмена информацией в реальном времени без необходимости установки SCADA-системы на локальном компьютере (терминале). Таким образом, речь идет о технологиях терминального доступа с использованием так называемых «тонких» клиентов.Терминал может играть роль как станции оператора/диспетчера, так и АРМ нерегулярных пользователей (технологов, специалистов службы КИП и т. п.), которые могут иметь доступ к необходимой оперативной информации о технологическом процессе и оборудовании (рис. 2.8).

При работе в терминальном режиме вся обработка информации производится на сервере. Его конфигурация зависит от установленных на сервере приложений и от количества обслуживаемых им терминалов. При обработке высокоскоростных приложений для большого количества терминалов (десятки) может потребоваться достаточно дорогостоящий сервер (большая оперативная память).Используя новые архитектурные возможности, компании-разработчики SCADA-систем стали предлагать терминальные сервисы, поддерживающие выполнение SCADA-приложений в режиме сессии. Компания Wonderware внедрила терминал-серверную технологию для SCADA-системы InTouch версии 7.1. Появление версий iFIX (Intellution/GEFanuc), поддерживающих ОС Windows 2000, открыло возможность применения ПО iClientTerminalServer для поддержкимногосеансовой работы«тонких» клиентов. Не отстали и другие ведущие производители SCADA-продуктов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: