Физические свойства жидкостей

ГИДРАВЛИКА

   Системы водоснабжения и водоотведения предприятий, отдельных зданий и сооружений связаны с перемещением жидкостей по трубопроводам, перемешиванием, разделением смесей путем отстаивания, фильтрования и центрифугирования.

   В зависимости от основных законов, определяющих скорость процессов, различают:

- гидромеханические процессы, скорость которых определяется законами гидродинамики- науки о движении жидкостей и газов(перемещение жидкостей и газов, разделение неоднородных систем в поле сил тяжести или центробежных сил, под действием разности давлений, перемешивание жидкостей);

- тепловые процессы, скорость определяется законами теплопередачи (нагревание, охлаждение, выпаривание, конденсация). Скорость тепловых процессов определяется разностью температур, а также гидродинамическими условиями (режимы движения теплоносителей);

- массообменные процессы, характеризуются переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз (абсорбция, ректификация, экстракция, выщелачивание, кристаллизация, адсорбция). Протекание процессов массообмена связано с гидродинамическими условиями в фазах и на границе их раздела и, часто, с процессами теплопереноса.

- химические процессы, скорость протекания которых зависит от законов химической кинетики;

- механические процессы, описываются законами механики твердых тел. Эти процессы происходят при подготовке исходных твердых материалов и обработки конечных продуктов (измельчение, транспортирование, смешение твердых веществ)

    Все эти процессы связаны с движением потоков и называются гидромеханическими процессами. Практическое приложение законов гидромеханики изучается в гидравлике, которая делится на гидростатику (учение о равновесии жидкостей) и гидродинамику (учение о движении жидкостей).

  Законы гидродинамики используются, главным образом, для расчета скорости движения и расхода жидкостей при заданной движущей силе (перепад давлений), или для решения обратной задачи – определение необходимой движущей силы для обеспечения заданного расхода жидкости или скорости ее движения. Законы гидродинамики составляют также основу гидромеханических процессов, в значительной мере определяют характер течения теплообменных и массообменных процессов.

  Гидростатика рассматривает законы равновесия и состояния покоя.

                                  Основные определения

В гидравлике принято объединять жидкости, газы и пары под единым наименованием – жидкости.    Под термином «жидкость» понимают вещества, обладающие текучстью при приложении к ним минимальных сил сдвига(сохраняют форму и занимают полностью объем).

При исследовании гидравлических процессов вводится понятие идеальной жидкости. Идеальная жидкость абсолютно несжимаема, не изменяет плотности при изменении температуры и не обладает внутренним трением между частицами (вязкостью).

Реальные жидкости делятся на собственно жидкости, называемые капельными и упругие жидкости – газы (способны изменять объем при изменении давления).

Физические свойства жидкостей

Жидкости характеризуются плотностью, вязкостью и поверхностным натяжением.

Масса жидкости, заключенная в единице объема, называется плотностью (кг/м3 ).

Вес единицы объема жидкости называется удельным весом (н/ м3).

Величина, обратная плотности называется удельным объемом3/ кг).

Плотность газов может быть рассчитана из уравнения состояния для идеальных газов           

                                 рV=   RT m/ M,

где р –давление, V – объем,   R- универсальная газовая постоянная, T- абсолютная температура, m – масса газа,  M- молекулярный вес газа.

                = m/ V=рM\RT  

Удельный объем газа  = RT / рM

 

Свойство жидкости оказывать сопротивление движению называется вязкостью.

 

При движении реальной жидкости в ней возникают силы внутреннего трения, оказывающие сопротивление движению. Слои жидкости движутся с относительной скоростью, скорость движения слоев уменьшается от оси к стенкам трубы, на поверхности трубы скорость движения жидкости становится равной нулю. Сила сопротивления перемещению слоев относительно друг друга, отнесенная к единице площади называется напряжением внутреннего трения =T /F,

причем согласно закону Ньютона  (Δ / Δn);

где Δ / Δn - градиент скорости по нормали, т.е. относительное изменение скорости на единицу расстояния между силами по направлению, перпендикулярному к направлению течения жидкости.

    - динамический коэффициент вязкости или просто вязкость, зависит от физических свойств жидкости  [н сек / м2 = Па·с].

Отношение вязкости к плотности жидкости называется кинематическим коэффициентом вязкости  или просто кинематической вязкостью

2/сек].

1 спз = 10-3 Па·с

 - коэффициент кинематической вязкости

 

Характеристкиа реальных жидкостей

 

1. Ньютоновские жидкости


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: