Ограничения целостности

Ограничения целостности обеспечивают непротиворечивость данных при переводе системы БД из одного состояния в другое и позволяют адекватно отражать ПО данными, хранимыми в БД.

 Ограничения делятся на явные и неявные.

Неявные ограничения определяются самой структурой данных. Например, тот факт, что записи типа СОТРУДНИК являются обязательными членами какого-либо экземпляра набора данных ПОДРАЗДЕЛЕНИЕ, служит, по существу, ограничением целостности, означающим, что каждый сотрудник организации непременно должен быть в штате некоторого подразделения.

Явные ограничения задаются в схеме базы данных с помощью средств языка описания данных (DDL, DataDefinitionLanguage). В качестве явных ограничений чаще всего выступают условия, накладываемые на значения данных. Например, заработная плата не может быть отрицательной, а дата приема сотрудника на работу обязательно будет меньше, чем дата его перевода на другую работу. За выполнением этих ограничений следит СУБД в процессе своего функционирования.

Также различают статические и динамические ограничения целостности.

Статические ограничения присущи всем состояниям ПО, а динамические определяют возможность перехода ПО из одного состояния в другое.

Примерами статических ограничений целостности могут служить требования уникальности номера паспорта или ограничения на дату рождения, которая не может быть больше текущей даты.

 В качестве примера динамического ограничения целостности можно привести ограничение банковской системы, в соответствии с которым нельзя удалить сведения о клиенте, пока у него не закрыт счёт.

В настоящее время разработано много различных моделей данных. Основные – это сетевая, иерархическая и реляционная

Ранние подходы к организации СУБД

Прежде, чем перейти к детальному и последовательному изучению реляционных систем БД, остановимся коротко на ранних (дореляционных) СУБД. В этом есть смысл по трем причинам: во-первых, эти системы исторически предшествовали реляционным, и для правильного понимания причин повсеместного перехода к реляционным системам нужно знать хотя бы что-нибудь про их предшественников; во-вторых, внутренняя организация реляционных систем во многом основана на использовании методов ранних систем; в-третьих, некоторое знание в области ранних систем будет полезно для понимания путей развития постреляционных СУБД.

общие характеристики ранних систем:

1. Эти системы активно использовались в течение многих лет, дольше, чем используется какая-либо из реляционных СУБД. На самом деле некоторые из ранних систем используются даже в наше время, накоплены громадные базы данных, и одной из актуальных проблем информационных систем является использование этих систем совместно с современными системами.

2. Все ранние системы не основывались на каких-либо абстрактных моделях. Как мы упоминали, понятие модели данных фактически вошло в обиход специалистов в области БД только вместе с реляционным подходом. Абстрактные представления ранних систем появились позже на основе анализа и выявления общих признаков у различных конкретных систем.

3. В ранних системах доступ к БД производился на уровне записей. Пользователи этих систем осуществляли явную навигацию в БД, используя языки программирования, расширенные функциями СУБД. Интерактивный доступ к БД поддерживался только путем создания соответствующих прикладных программ с собственным интерфейсом.

4. Можно считать, что уровень средств ранних СУБД соотносится с уровнем файловых систем.

5. Навигационная природа ранних систем и доступ к данным на уровне записей заставляли пользователя самого производить всю оптимизацию доступа к БД, без какой-либо поддержки системы.

6. После появления реляционных систем большинство ранних систем было оснащено "реляционными" интерфейсами. Однако в большинстве случаев это не сделало их по-настоящему реляционными системами, поскольку оставалась возможность манипулировать данными в естественном для них режиме.

Основные особенности систем, основанных на инвертированных списках

К числу наиболее известных и типичных представителей таких систем относятся Datacom/DB компании AppliedDataResearch, Inc. (ADR), ориентированная на использование на машинах основного класса фирмы IBM, и Adabas компании Software AG.

Организация доступа к данным на основе инвертированных списков используется практически во всех современных реляционных СУБД, но в этих системах пользователи не имеют непосредственного доступа к инвертированным спискам (индексам).

Индекс — объект базы данных, создаваемый с целью повышения производительности поиска данных. Таблицы в базе данных могут иметь большое количество строк, которые хранятся в произвольном порядке, и их поиск по заданному критерию путём последовательного просмотра таблицы строка за строкой может занимать много времени. Индекс формируется из значений одного или нескольких столбцов таблицы и указателей на соответствующие строки таблицы и, таким образом, позволяет искать строки, удовлетворяющие критерию поиска.

Структуры данных

База данных, организованная с помощью инвертированных списков, похожа на реляционную БД, но с тем отличием, что хранимые таблицы и пути доступа к ним видны пользователям. При этом:

1. Строки таблиц упорядочены системой в некоторой физической последовательности.

2. Физическая упорядоченность строк всех таблиц может определяться и для всей БД (так делается, например, в Datacom/DB).

3. Для каждой таблицы можно определить произвольное число ключей поиска, для которых строятся индексы. Эти индексы автоматически поддерживаются системой, но явно видны пользователям.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: