Композиционные сверхрешетки типа I

Первая композиционная сверхрешетка такого типа была выращена в системе GaAs—AlxGa1-xAs. На рис. 5 показаны последовательность слоев в такой сверхрешетке и ее энергетический профиль в реальном пространстве. Разрывы зон на гетерограницах служат потенциальными барьерами для электронов и дырок и тем самым создают периодический сверхрешеточный

            Энергия, Е

Рис. 5. Схема расположения последовательности слоев (слева) и зонная диаграмма в зависимости от координат (справа) для сверхрешетки GaAs—AlxGa1-xAs. Стрелка на левом рисунке показывает направление роста слоев; 1—дырочные подзоны в валентной зоне; 2 —электронные подзоны в зоне проводимости.

 

потенциал в зоне проводимости и в валентной зоне. Характерной чертой такой сверхрешетки является то, что узкозонный слой, зажатый между двумя широкозонными полупроводниками, образует две прямоугольные квантовые ямы — одну для электронов и одну для дырок. Глубины этих потенциальных ям зависят от того, какая часть разности ширин запрещенной зоны ∆Eg = EgAiGaAs - EgGaAs приходится на разрыв в зоне проводимости ∆Ес, а какая - на разрыв в валентной зоне ∆Еу.

Результаты первых экспериментальных исследований различных эффектов в прямоугольных квантовых, ямах GaAs [110] согласуются со значениями ∆Ес = (0,85 ± 0,03)· ∆Еg и ∆EV = (0,15 ± 0,03)· ∆Еg. Но исследования параболических квантовых ям, выращенных в системе GaAs— GaAs—AlxGa1-xAs [136], привели к выводу о том, что разрыв ∆Eg делится почти поровну между зоной проводимости и валентной зоной. Объяснение этого противоречия дано в работе [137], где показано, что экспериментальные данные как для прямоугольных, так и для параболических квантовых ям на основе GaAs можно согласовать, если положить, что разрыв в зоне проводимости ∆Ес равен 0,57 ∆Eg (∆Еу = 0,43 ∆Eg), а носители в квантовых ямах характеризуются эффективными массами

            m*e = 0,0665 m0 для электронов,

mh*h = 0,34 m0 для тяжелых дырок и

           mI*h = 0,094 т0 для легких дырок.

Указанные значения разрывов зон были позднее подтверждены независимыми экспериментальными данными по явлениям переноса [138]. Согласно другим экспериментальным результатам [139—144], наиболее правдоподобные значения разрывов зон в гетеропереходе GaAs—AlxGa1-xAs составляют ∆Ес = 0,6∆Eg и ∆EV =0,4 ∆Eg независимо от молярной доли А1 в тройном соединении.

Другой класс сверхрешеток типа I составляют так называемые сверхрешетки с напряженными слоями (CHC) [145—147]. Это высококачественные сверхрешетки из материалов с несовпадающими постоянными решетки. Слои в этих структурах делаются такими тонкими, чтобы согласование решеток обеспечивалось исключительно за счет напряжений в слоях без образования дефектов несоответствия.

Свойствами СНС можно управлять путем должного выбора материалов и геометрических параметров. При величине рассогласования решеток в несколько процентов для слоев с толщинами порядка 10 нм может быть достигнуто высокое качество эпитаксии [148—150]. При этом вся сверхрешетка характеризуется постоянным параметром решетки в направлении, параллельном границам. Рассогласование между сверхрешеткой в целом и подложкой также может компенсироваться упругими напряжениями до тех пор, пока толщина сверхрешетки не превышает некоторого критического значения [149].

К настоящему времени для выращивания СНС использовались пять полупроводниковых систем: GaAs—InxGa1-xAs [149, 151 ], GaAs—GaAsxP1-x [145, 152], GaP—GaAsxP1-x [153], ZnS—ZnSe [154] и GaSb—AlSb [155]. Следует отметить, однако, что возможно создание и новых СНС из весьма широкого класса материалов с несогласующимися решетками.

Среди сверхрешеток типа I существуют также сверхрешетки вида полуметалл — полупроводник, обладающие интересными свойствами. Типичным их представителем является сверхрешетка HgTe—CdTe.

Такая сверхрешетка представляет собой предельный случай многослойной гетероструктуры Hg1-xCdxTe—CdTe при х = 0 [156]. Например, она может состоять из отдельных чередующихся слоев HgTe (полуметалл с отрицательной запрещенной зоной) толщиной 18 нм и CdTe (широкозонный полупроводник с Eg=1,49 эВ при 300 К) толщиной 4 нм. Согласно «правилу общего аниона» [157], которое утверждает, что потенциалы ионизации полупроводниковых соединений определяются исключительно анионной компонентой, разрывы в валентной зоне сверхрешетки HgTe—CdTe близки к нулю. Поэтому в данной сверхрешетке вся разность запрещенных зон ∆Eg, равная ширине запрещенной зоны CdTe, сосредоточена в зоне проводимости. Это приводит к достаточно редкому соотношению для разрыва в зоне проводимости: ∆Ес = ∆Eg = EgCdTe.

Семейство сверхрешеток типа I завершают сверхрешетки на основе кремния. Рамки кремниевой технологии (исключающей полупроводниковые соединения типов AIIIBV, AIIBVI и AIVBVI) сильно ограничивают число возможных структур.

Что касается обычных слоистых структур, то здесь примером кремниевой сверхрешетки является система Si—Si1-xGex [158]. Помимо этой кристаллической системы кремниевая технология предлагает и некоторые другие новые возможности. Одна из них — это аморфные сверхрешетки из гидрогенизированного аморфного кремния (a-Si:H) и гидрогенизирован-ного аморфного германия (a-Ge:H) (либо нитрида кремния (a-SiNx:H) или карбида кремния (a- Si1-xCx:H), которые не являются ни решеточно-согласованными, ни эпитаксиальными, хотя имеют гетерограницы в основном бездефектные и почти атомно-гладкие [159, 160]. Вторая возможность — это МОП-структуры (металл — оксид — кремний) с сеточным электродом, представляющим совокупность тонких параллельных металлических нитей, однородно нанесенных на поверхность оксида [158, 161]. Предполагается, что в этой системе дополнительный периодический потенциал будет глубже проникать в кремний, если в сетке чередовать нити с различными приложенными напряжениями. Третья возможная кремниевая сверхрешеточная структура представляет собой легированную сверхрешетку [126], но она здесь не будет обсуждаться.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: