Курсовая работа
на тему:
«Методы решения систем линейных неравенств»
Выполнил студент группы МЭК 1-2
Чанкин Пётр Алексеевич
Научный руководитель:
Профессор Александр Самуилович Солодовников
Москва 2002г
Оглавление
Вступление... 2
Графический метод... 3
Симплекс-метод... 6
Метод искусственного базиса.. 8
Принцип двойственности... 10
Список использованной литературы.... 12
Вступление
Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов.
Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.
|
|
|
Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д.
В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам.
Графический метод
Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.
В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.
Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:


1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как
и
графики и область допустимых решении находятся в первой четверти.
Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.
Если область допустимых решений не является замкнутой, то либо max(f)=+ ∞, либо min(f)= -∞.
2. Теперь можно перейти к непосредственному нахождению максимума функции f.
|
|
|
Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что
f(C)=f(4;1)=19 – максимум функции.
Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.
В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -∞ до +∞ прямые f=a смещаются по вектору нормали[1]. Если при таком перемещении линии уровня существует некоторая точка X – первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум f на множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а→-∞ прямая f=a пересекает множество допустимых решений, то min(f)= -∞. Если это происходит при а→+∞, то
max(f)=+ ∞.

В нашем примере прямая f=a пересевает область ABCDE в точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.
Симплекс-метод
Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

1. Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.
Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.
В данном примере X3, X4, X5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:
| Б. | X1 | X2 | X3 | X4 | X5 | C |
| X3 | 0 | -1 | 1 | 1 | 0 | 1 |
| X4 | 0 | 1 | -1 | 0 | 1 | 1 |
| X5 | 1 | 1 | 1 | 0 | 0 | 2 |
| f | 0 | -6 | 7 | 0 | 0 | 3 |
В первом столбце данной таблицы обозначены базисные неизвестные, в последнем – значения свободных неизвестных, в остальных – коэффициенты при неизвестных.
2. Для того чтобы найти максимум функции f надо с помощью преобразований методом Гаусса сделать так, чтобы все коэффициенты при неизвестных в последней строке были неотрицательными (для нахождения минимума, сделать так, чтобы все коэффициенты были меньше или равны нулю).
| Б | X1 | X2 | X3 | X4 | X5 | C |
X3
| -1 | 1 | 1 | 0 | 0 | 1 |
| X4 | 1 | -1 | 0 | 1 | 0 | 1 |
| X5 | 1 | 1 | 0 | 0 | 1 | 2 |
| f | -6 | 7 | 0 | 0 | 0 | 3 |
Для этого выбираем столбец с отрицательным коэффициентом в последней строке[2] (столбец 3) и составляем для положительных элементов данного столбца отношения свободный член/коэффициент (1/1; 2/1)[3]. Из данных отношений выбираем наименьшее и помечаем соответствующую строку[4].
Нами выбран элемент в ячейке (3;3). Теперь с помощью метода Гаусса обнуляем другие коэффициенты в данном столбце, это приводит к смене базиса и мы на один шаг приближаемся к оптимальному решению.
| Б | X1 | X2 | X3 | X4 | X5 | C |
| X3 | 0 | 0 | 1 | 1 | 0 | 2 |
| X1 | 1 | -1 | 0 | 1 | 0 | 1 |
| X5 | 0 | 2 | 0 | -1 | 1 | 1 |
| f | 0 | 1 | 0 | 6 | 0 | 9 |
Как видно из таблицы теперь все коэффициенты в последней строке больше либо равны нулю. Это означает, что нами найдено оптимальное значение. Свободные неизвестные равны нулю, значению базисных неизвестных и максимуму функции f соответствует значения свободных неизвестных.
Метод искусственного базиса
Если после подготовки ЗЛП к специальному виду для решения симплекс методом, не в каждой строке системы ограничений есть базисная переменная (входящая в данную строку с коэффициентом 1, а в остальные строки с коэффициентом 0), то для решения данной ЗЛП надо воспользоваться методом искусственного базиса.
|
|
|
Суть метода довольно проста:
1. К строкам, в которых отсутствует базисная переменная добавляется по одной искусственной базисной переменной.
2. Новая задача решается Симплекс-методом, причем все искусственные базисные переменные должны стать свободными (выйти из базиса) и их сумма должна равняться нулю, в обратном случае в данной системе невозможно выделить допустимый базис.
Рассмотрим следующий пример:

min(f)-?
1. В первом уравнении нет базисных неизвестных. Введём искусственную базисную неизвестную Y1 и заполним первую симплекс-таблицу
Для того, чтобы избавится от искусственной базисной неизвестной нам предстоит решить вспомогательную задачу:
F=Y1→min
Выражая базисную неизвестную Y1 через свободные получаем:
F+4X1+X2=4 →min
| Б | X1 | X2 | X3 | X4 | Y1 | С |
Y1
| 4 | 1 | 0 | 0 | 1 | 4 |
| X4 | 11 | 3 | -5 | -1 | 0 | 12 |
| F | 4 | 1 | 0 | 0 | 0 | 4 |
Выбираем элемент в ячейке (3;2) и делаем шаг.
| Б | X1 | X2 | X3 | X4 | Y1 | С |
| X2 | 4 | 1 | 0 | 0 | 1 | 4 |
| X4 | -1 | 0 | -5 | -1 | -3 | 0 |
| F | 0 | 0 | 0 | 0 | -1 | 0 |
min(f)=0, все коэффициенты в последней строке меньше или равны нулю, следовательно мы перешли к новому естественному базису. Теперь можно решать основную задачу.
X3
Y1






