Выберите для смачивание - смачивающие агенты

Смачивание зависит от эффективности снижения поверхностного натяжения в динамических условиях, т. е. по мере растекания смачивающей жидкости по поверхности субстрата поверхностно-активные молекулы должны быстро диффундировать к движущейся границе между жидкостью и субстратом. Следовательно, хорошие смачиватели должны иметь следующие свойства: 1) обладать значительной движущей силой для перехода на межфазную границу твердое тело-жидкость; 2) эффективно снижать поверхностное натяжение; 3) иметь достаточную концентрацию свободных молекул ПАВ, не связанных в мицеллы; 4) быстро двигаться к вновь возникающей поверхности. Чтобы удовлетворять этим требованиям, хороший смачиватель должен быть поверхностно-активным веществом со сравнительно небольшими и достаточно гидрофобными молекулами. Гидрофобность смачивателя должна быть такой, чтобы это вещество очень слабо растворялось в воде, и в то же время его ККМ не должна быть очень низкой. Обычно смачиватели - это ПАВ с разветвленными неполярными радикалами, поскольку такие вещества не так легко образуют мицеллы, как вещества с линейными гидрофобными группами. В промышленных композициях смачивателей используются анионные и неионные ПАВ.

В качестве примеров гидрофобизирующих агентов в порядке возрастающей эффективности можно привести парафины, силиконы, силаны и фторированные углеводороды. В качестве гидрофобизирующих агентов часто используют также катионные ПАВ.

Конформация силикона на поверхности такова, что силоксановая основная цель взаимодействует с поверхностью, а метальные группы ориентированы наружу, обработка поверхности силиконом приводит к эффективному метилированию поверхности.

Дихлордиметилсилан, как и другие силаны, является эффективным гидрофобизатором для поверхностей минералов, содержащих силанольные группы. Как и в случае силиконов, обработка поверхности силанами приводит к ее эффективному метилированию.

Краевой угол капли жидкости на плоской поверхности твердого тела обычно измеряют гониометрически либо на капле, находящейся на горизонтальной плоскости (сидящая капля), либо на газовом пузырьке, подведенном к межфазной границе твердое тело-жидкость.

Краевой угол контакта отсчитывается с помощью объектива микроскопа при прямом наблюдении угла. В результате действия гравитационных сил форма сравнительно крупных капель отличается от строго сферической, что используется в одном из методов измерения поверхностного натяжения.

Очень простой метод измерения контактных углов, пригодный для

скрининга, состоит в измерении диаметра капли стандартного объема, нанесенной на поверхность.

При определении краевых углов важно проводить измерения сразу после нанесения капли на поверхность. Испарение воды приводит к сжатию капли и изменению краевого угла (или, точнее, к переходу от краевого угла натекания к краевому углу оттекания).

Косвенный метод определения краевого угла состоит в измерении капиллярного поднятия жидкости у вертикально расположенной пластинки. Твердую пластинку располагают вертикально и приводят в контакт с жидкостью, затем измеряют высоту мениска h.

Измерение краевых углов - это не очень простая процедура, как это может показаться на первый взгляд. Независимо от метода измерения могут возникать следующие осложнения.

1. Только немногие поверхности твердых тел можно считать достаточно плоскими. Углы, которые образует межфазная поверхность флюид-флюид с твердой поверхностью в отдельных точках твердой поверхности, напрямую зависят от ее макроскопической геометрии. Шероховатости поверхности, размер которых влияет на измерения краевых углов, можно наблюдать с помощью сканирующей электронной микроскопии.

2. Включение низкоэнергетических доменов в высокоэнергетические поверхности сильно влияет на краевой угол. Таким примером могут служить жировые загрязнения на поверхности стекла.

3. Для измерения точных значений краевых углов контактирующие фазы должны находиться в равновесии, что выполняется не всегда по следующим причинам: впитывание жидкости в приповерхностную зону твердого тела; переориентация поверхностных групп твердого тела, в частности полярных групп при контакте с водой.

На практике условия, при которых измеряются краевые углы, далеки от идеальных. В большинстве случаев наблюдаемые контактные углы сильно зависят от того, наступает ли жидкость на сухую поверхность или отступает от смоченной поверхности. В этом случае наблюдается гистерезис краевого угла. Гистерезис краевого угла всегда весьма значителен при смачивании шероховатых или загрязненных поверхностей.

Многие поверхности одновременно являются и шероховатыми, и гетерогенными; на таких поверхностях необходимо измерять краевые углы и натекания, и оттекания. Для измерений гистерезиса краевых углов более всего подходит метод с использованием пластинки Вильгельми.

В целом можно сделать заключение, что на гетерогенной поверхности краевой угол натекания есть мера смачиваемости низкоэнергетической части поверхности, а угол оттекания в


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: