Солнечная энергия в сочетании с другими возобновляемыми источниками

Хороший результат приносит комбинирование различных возобновляемых источников энергии, например, тепло Солнца в сочетании с сезонным аккумулированием тепла в виде биомассы. Либо, если оставшаяся потребность в энергии очень низка, можно использовать жидкие или газообразные виды биотоплива в сочетании с эффективными котлами в дополнение к солнечному отоплению.

Интересную комбинацию представляют собой солнечное отопление и котлы, работающие на твердой биомассе. Этим же решается и проблема сезонного хранения солнечной энергии. Использование биомассы летом не является оптимальным решением, так как КПД котлов при частичной загрузке невысок, к тому же относительно высоки потери в трубах - а в небольших системах сжигание древесины летом может причинять неудобство. В таких случаях все 100% тепловой нагрузки летом может обеспечиваться за счет солнечного отопления. Зимой, когда количество солнечной энергии незначительно, практически все тепло вырабатывается за счет сжигания биомассы.

В Центральной Европе накоплен большой опыт комбинирования солнечного отопления и сжигания биомассы для производства тепла. Обычно около 20-30% общей тепловой нагрузки покрывает солнечная система, а главная нагрузка (70-80%) обеспечивается биомассой. Это сочетание может применяться и в индивидуальных жилых домах, и в системах центрального (районного) отопления. В условиях Центральной Европы около 10 м3 биомассы (например, дров) достаточно для отопления частного дома, причем солнечная установка помогает сэкономить до 3 м3 дров в год.

Солнечные тепловые электростанции

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.

Солнечные концентраторы

Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду.

Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма "Luz Corp." установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.

Существуют следующие виды солнечных концентраторов:

1. Солнечные параболические концентраторы

2. Солнечная установка тарельчатого типа

3. Солнечные электростанции башенного типа с центральным приемником.

Солнечные пруды

Ни фокусирующие зеркала, ни солнечные фотоэлементы не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах.

Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли - на поверхности. Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности. Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает (в то время как верхние слои воды остаются относительно холодными). Горячий придонный "рассол" используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество. Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: