Усилительный каскад на биполярном транзисторе

Схема УНЧ имеет следующий вид:

Рис.233

Сначала проведем расчет разделительных конденсаторов C1 и С2 для заданной полосы рабочих частот, емкости нагрузки и сопротивления нагрузки. По условию имеем:

F = 1 кГц, Rн = 10 кОм, Cн = 100 пФ

В области нижних частот сопротивления конденсаторов С1 и С2 увеличиваются и становятся соизмеримыми с эквивалентными сопротивлениями входа и выхода УНЧ. Амплитудно-частотные искажения в этой области зависят от низкочастотных постоянных времени t1 и t2 цепей разделительных конденсаторов C1 и C2 соответственно. Результирующая постоянная времени каскада t на некоторой частоте w оценивается через коэффициент частотных искажений M:

Сам же коэффициент частотных искажений на частоте w определяется так:

M(w) = K(wср)/K(w)

где K(wср) - коэффициент усиления на средней частоте, а K(w) - коэффициент усиления на данной частоте. Тогда на граничных частотах по определению M = .  Отсюда постоянная времени каскада на граничных частотах t =1/w. Определим постоянную времени каскада tн на нижней частоте (она заведомо больше постоянной времени на верхней частоте):

Постоянная времени каскада сложно зависит от постоянных времени отдельных цепей однако, если в каскаде постоянная времени некоторой ветви существенно меньше постоянных времени остальных ветвей, то можно считать, что постоянная времени всего каскада определяется именно ей. Поэтому положим t1 = tн, а t2 = 10 tн.   

Рассмотрим эквивалентную схему входной цепи с разделительным конденсатором С1:

Рис.24

Для определения сопротивления Rbe (входное сопротивление транзистора в рабочей точке) используем входную характеристику при Uke = 5.6В:

Рис.25

Получаем:

Для этой цепи t1 = tн = 0.0008c. В то же время t1 = RC1, где R – суммарное сопротивление ветви определяется:

 

Отсюда находим и С1:

Итак, полученный результат C1 = 4.2 мкФ, или если использовать стандартный ряд значений емкостей электролитических конденсаторов С1 = 5мкФ.

Аналогично действуем при определении второй разделительной емкости. Рассмотрим эквивалентную схему выходной цепи с разделительным конденсатором С2:

Рис.26

Для определения сопротивления Rke (выходное сопротивление транзистора в рабочей точке) используем выходную характеристику при Ib = 78 мкА:

Рис.27

Получаем:

В данном случае t2 = 10tн. В то же время t2 = RC1, где R – суммарное сопротивление ветви определяется:

Отсюда:

Получаем результат С2 = 758нФ, или по стандартной линейке С2=1мкФ.

Теперь проанализируем полученный УНЧ в МС7.

Амплитудно-частотный анализ (АЧХ): 

 

Рис.28
  

Амплитудно-временной анализ:

Рис.29

 

 

Для оценки качества усиления проведем спектральный анализ выходного сигнала в заданной полосе частот (входной сигнал имеет частоту Fвх = 1000Гц):

Рис.30

 

Оценим коэффициент нелинейных искажений y в %:

 

 

Заключение

Итак, в результате проделанной работы были определены параметры модели экспериментально исследованного транзистора МП 40, после чего этот транзистор был добавлен в библиотеку МС7. Во второй части работы также были достигнуты положительные результаты: с помощью делителя в промежуточном каскаде УНЧ на биполярном транзисторе  установлена рабочая точка, соответствующая середине нагрузочной прямой. Рассчитаны значения минимальные значения разделительных емкостей, вносящих наименьшие искажения в выходной сигнал. Также для УНЧ на исследуемом транзисторе была построена АЧХ и рассчитан коэффициент нелинейных искажений.    

Список литературы

1. Григоров О.П., Замятин В.Я. «Транзисторы». Москва, Радио и связь, 1989


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: