Расчет перепада давлений в формующей головке

Для нахождения потерь весь путь движения расплава в головке разбивают условно на участки с постоянной геометрической формой каналов и нумеруют их. Общий перепад давления находят как сумму перепадов на полученных участках. Так, головку кольцевой формы канала можно разбить на три участка.

1. Форма канала кольцевая

 

г1= (3n+1)*V  (3.1)

n*р*R3*c

 

где n=0,4 – показатель степени;

V=9 см3/с – объемный расход;

R=0,3 см-радиус канала;

с =12 – число параллельных каналов на расчетном участке.

(3*0,4+1)*9

г1= 0,4*3,14*0,33*12 =126 с-1.

По номограмме [1] определяем напряжение сдвига:

=7,9·104 Па

Находим перепад на первом участке: [2]

 

ДС=2- (ℓ+mR)/ R, Па (3.2)

 

ℓ=17,2 см длина канала;

m=0 входовый поправочный коэффициент;

ДС =2*7,9*104(17,2+0*0,3) =359*104= 3,95 МПа;

                 0,3

2. Форма канала кольцевая, находим скорость сдвига по формуле 3.1:

 


    (3*0,4+1)*9

г2= 0,4*3,14*0,43*12 =73,3 с-1.

 

R=0,4 см-радиус канала;

с =12 – число параллельных каналов на расчетном участке

По номограмме [1] определяем напряжение сдвига:

=6,2·104 Па

Находим перепад на втором участке [2]:

ℓ=4 см – длина канала

Находим перепад давления на втором участке, по формуле 3.2:

ДС2= 2*6,2*104(4+0*0,4) =83*104= 0,83МПа;

0,4

3. Форма канала кольцевая, находим скорость сдвига по формуле 3.1:

г2= (3*0,4+1)*9

0,4*3,14*0,53*12 =2,8 с-1.

R=0,5 см-радиус канала;

с =12 – число параллельных каналов на расчетном участке

По номограмме [1] определяем напряжение сдвига:

=4,1·104 Па

Находим перепад на третьем участке [2]:

ℓ=3 см – длина канала

Находим перепад давления на втором участке, по формуле 3.2:

ДС2= 2*4,1*104(3+0*0,5) =31*104= 0,31 МПа;

                   0,5

Суммарный перепад давлений на всех участках для головки должен быть равен: [2]

5 МПа≤ У Дрi≥15 МПа;

Дробщ= У Др=3,95+0,83+0,31=5,09 Мпа.

Как видно, суммарный перепад давлений попадает в экспериментальную область 5 МПа≤5,09 Мпа≥15 МПа, которая обеспечивает оптимальную взаимосвязь между производительностью аппарата и степенью гомогенизации расплава.

 

Технико–экономические показатели

Наименование показатели Единица измерени я Данные проекта Данные завода

Дпр Ч100%

Дан

    аналога Проекта
1. Годовой объём производства тонн 3000 3500 116
2. Годовой объём производства Тыс. руб. 36000 42000 116
3. Производственные затраты Тыс. руб. 6360,172 6576,678 103
5. Оборотные средства Тыс. руб. 172485,252 1813473,77 105
6. Капитальные затраты Тыс. руб. 196548,529 205411,05 104
7. Численность рабочих: работающих рабочих чел. чел 45 36 45 36 100 100
8. Производительность труда, работающих – рабочих т/чел. т/чел. 135 108 157,5 126 116 116
9. Цена 1 т прод. Тыс. руб. 43 37 116
10. Себестоимость продукции Тыс. Руб./тонн 40,8 32,46 78
11. валовая прибыль Тыс руб. 25859 40711 157

 

 




Заключение

 

1. Предложено две схемы производства микро- и нанокомпозитов на основе полипропилена и древесной муки.

2. Введение в состав композита древесной муки взамен талька, существенно удешевляет полученный материал без ущерба для качества.

3. Экологическая сторона проекта представлена заменой в составе оборудования ванн устройством для подводной резки стренгов и использованием в рецептуре композита вторичного полипропилена.

4. Использование в проекте инженерные решения обеспечивают снижение себестоимости продукта на 22% и упрочнение нанокомпозита на 20–50% по отношению к аналогу.

 

 



Список литературы

 

1. Ричардсон С.Г. «промышленные композиционные материалы. М.: Химия, 2002 - 320 с.

2. Бортников В.Г. производство изделий из пластических масс: Учебное пособие для вузов в трех томах. Том 2. Технология переработки пластических масс. Казань: Изд-во «Дом печати». – 2002. – 399 с.

3. Тобольский А.Л. Свойства и структура полимеров. М.: Химия, 1991,-322 с.

4. Вахнева О.В., Аскадский Л.А., Попова М.Н. и др. Исследование релаксационных свойств первичного и вторичного полипропилена. // Механика композиционных материалов и конструкций.: Химия, 2001. – 454 с.

5. Фишер Э. Экструзия пластических масс. М.: Химия, 1970. – 282 с.

6. Лиоко В.Л., Струк В.А. К механизму действия наноразмерных модификаторов в полимерных матрицах. // Пластические массы, 2007, №8.

7. Липатов Ю.С. Межфазные явления в полимерах. Киев: Наукова думка, 1980, – 200 с.

8. Новиков В.У., Козлов Г.В., Бурьян Д.Ю. Фрактальный анализ структуры и свойств межфазных слоев в дисперсно-наполненных полимерных композитах // Механика композиционных материалов и конструкций, 2000, т. 8, №1. с. 111–149.

9. Аболонин Б.Е., Кузнецова И.М., Харлампиди Х.Э. Основы химических производств. М.: Химия, 2001. – 472 с.

10 Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств (ПБ 09–540–03).

11. Курсовое и дипломное проектирование при выполнении квалификационных работ: Метод.указания / Сост. X. Э. Харлампиди, А.А, Кутуев, Е.С. Чиркунов

12. Голубятников В.Л., Шувалов В.В. Автоматизация производственных процессов и АСУТП в химической промышленности. – М.: Химия, 1976.-484 с.

13. Кошарский Б.Д. Автоматические приборы, регуляторы и вычислительные системы. – Л. Машиностроение, 1976. - 484 с

14. Пожарная опасность веществ и материалов, применяемых в химической промышленноости. / Под ред. И.В. Рябова. – М.: Химия, 1970. - 470 с.

15. Категорирование помещений. НПБ 105–95. – М.:ЦИПТ Госстрой СССР, 1995.-76 с.

16. Долин М.М. Охрана труда. – М.: Химия, 1980. – 531 с.

17. Макаров Г.В. Охрана труда в химической промышленности. – М.: Химия, 1989. - 493 с.

18. Отопление, вентиляция, кондиционирование. СниП 2.04.05 – 91-М. ЦИТП Госстрой СССР, 1991. - 70 с.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: