Спецификация физической среды

 

       Основными характеристиками линии связи является амплитудно-частотная характеристика, полоса пропускания и пропускная способность. Выбор способа представления дискретной информации в виде сигналов, подаваемых на лини. Связи, называется физическим или линейным кодированием. От выбранного способа кодирования зависит спектр сигналов и, соответственно, пропускная способность линии.

       Код B8ZS исправляет последовательности, состоящие из 8 нулей. Для этого, он после первых трех нулей вместо оставшихся пяти нулей вставляет пять цифр: V-1*-0-V-1*. V здесь обозначает сигнал единицы, запрещенной для данного такта полярности, то есть сигнал, не изменяющий полярность предыдущей единицы, 1* - сигнал единицы корректной полярности, а знак звездочки отмечает тот факт, что в исходном коде в этом такте была не единица, а ноль. В результате на 8 тактах приемник наблюдает 2 искажения - очень маловероятно, что это случилось из-за шума на линии или других сбоев передачи. Поэтому приемник считает такие нарушения кодировкой 8 последовательных нулей и после приема заменяет их на исходные 8 нулей. Код B8ZS построен так, что его постоянная составляющая равна нулю при любых последовательностях двоичных цифр.

Исходный код: «сайгатуллин» в таблице ASCI:

(с) 10001000001 (а) 10000110000 (й) 10000111001 (г) 10000110011 (а) 10000110000 (т) 10001000010 (у) 10001000011 (л) 10000111011 (л) 10000111011 (и) 10000111000 (н) 10000111101.

В двоичном коде: 1000100000110000110000100001110011000011001110000110000100010000101000100001110000111011100001110111000011100010000111101

Так как в данном сочетании нет подряд восьми нулей, то этот код B8ZS будет полностью совпадать с кодом AMI.

Изображение сигнала в коде B8ZS:

 

 

Поскольку в локальной сети используется 100BaseF длительность импульса .

Период следования импульса .

Ширина спектра .

Скважность .

Частота следования сигнала .

 

Связь между полосой пропускания линии и ее максимально возможной пропускной способностью, вне зависимости от принятого способа физического кодирования, установил Найквист:

С = 2F log2 M, где М - количество различимых состояний информационного параметра.

У нас сигнал имеет 5 различимых состояния, следовательно пропускная способность равна удвоенному значению ширины полосы пропускания линии связи, то есть

Для расчета максимального количества кадров минимальной длины, проходящих по сегменту Ethernet, выберем кадр Кадр 802.3/LLC.

Таким образом, длина минимального кадра составляет 67 байт, что составляет 536 бит. На его передачу затрачивается 5,36 мкс. Прибавив межкадровый интервал в 9,6 мкс, получаем, что период следования кадров минимальной длины составляет 14,96 мкс. Отсюда максимально возможная пропускная способность сегмента Ethernet составляет 66845 кадр/с. Проанализировав полученное время следования минимального пакета, получаем, что в первой, третьей и четвертой подсети выполняется условие Tmin > PDV, PDV=7,516мкс, Tmin=14,96 мкс. Во второй сети PDV=7,657мкс, в пятой подсети PDV=9,062мкс. Это условие обеспечивает надежное распознавание коллизий. Что является условием качественной работы сети.

Кадры максимальной длины технологии Ethernet имеют поле длины 1518 байт, что составляет 12144 бит. Время передачи составляет 131,04 мкс. Максимально возможная пропускная способность сегмента Ethernet для кадров максимальной длины составляет 7631 кадр/с.

Теперь рассчитаем, какой максимальной полезной пропускной способностью в бит в секунду обладают сегменты Ethernet при использовании кадров разного размера.

Под полезной пропускной способностью протокола понимается скорость передачи пользовательских данных, которые переносятся полем данных кадра. Эта пропускная способность всегда меньше номинальной битовой скорости протокола Ethernet за счет нескольких факторов:

• служебной информации кадра;

• межкадровых интервалов (IPG);

• ожидания доступа к среде.

Для кадров минимальной длины полезная пропускная способность равна:

Сп = 66845· 67 · 8 = 35,83 Мбит/с.

Это меньше предельной пропускной способности 100 Мбит/с, но следует учесть, что кадры минимальной длины используются в основном для передачи квитанций, так что к передаче собственно данных файлов эта скорость отношения не имеет.

Для кадров максимальной длины полезная пропускная способность равна:

Сп = 7631· 1518 · 8 = 92,67 Мбит/с,

что весьма близко к номинальной скорости протокола.

Рассчитаем загруженность сети при передачи кадров минимальной и максимальной длины.

Так как в первой подсети 49 компьютеров, то максимальная, 100 % загруженность сети по минимальному кадру составляет: 49·67·8=26264 бит. Реальная загруженность сети - 1496 бита. Что составляет 5,7 %.

Максимальная загруженность сети по максимальному кадру составляет 49·1518·8=595056 бит. Реальная - 13104 бит. Это составляет 2,2 %.

Для второй подсети: минимальный кадр – 41·67·8=21976 бит. Реальная загруженность сети - 1496 бита. Что составляет 6,81 %; максимальный кадр – 41·1518·8=497904 бит. Реальная - 13104 бит. Это составляет 2,63 %.

Для третьей подсети: минимальный кадр – 56·67·8=30016 бит. Реальная загруженность сети - 1496 бита. Что составляет 4,98 %; максимальный кадр – 56·1518·8=680064 бит. Реальная - 13104 бит. Это составляет 1,93 %.

Для четвертой подсети: минимальный кадр – 40·67·8=21440 бит. Реальная загруженность сети - 1496 бита. Что составляет 6,98 %; максимальный кадр – 40·1518·8=485760 бит. Реальная - 13104 бит. Это составляет 2,7 %.

Для пятой подсети: минимальный кадр – 39·67·8=20904 бит. Реальная загруженность сети - 1496 бита. Что составляет 7,16 %; максимальный кадр – 39·1518·8=473616 бит. Реальная - 13104 бит. Это составляет 2,77 %.

Загруженность подсети не превышает порога, определённого для Ethernet в 30%. В случае превышения этого порога полезная пропускная способность сети резко падает из-за роста интенсивности коллизий и увеличения времени ожидания доступа к среде.

Таким образом, созданная сеть является работоспособной с точки зрения предъявляемых требований.

 

Заключение

 

В настоящем курсовом проекте были проведены необходимые расчеты для проектирования локальной вычислительной. Были выделены IP-адреса для 5 подсетей и 225 устройств в подсетях, произведён расчёт PDV и PVV для каждой подсети. Так же был произведен подбор необходимого сетевого оборудования.

 

 

Список использованной литературы:

 

1. Олифер В. Г. Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы. Учебник для ВУЗов. 2-е издание. Санкт – Петербург, Питер, 2004 год.-864с.

2. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. 2-ое изд. – СПб.: Питер, 2005. – 703 с.: ил.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: