Линейные преобразования

Содержание

 

Введение

§1. Линейные преобразования

§2. Индексные обозначения

§3. Общее определение тензоров

§4. Скалярное произведение и метрический тензор

§5. Действия с тензорами

§6. Поднятие и опускание индексов

§7. Тензоры в криволинейных координатах

§8. Примеры вычислений

Заключение

Литература



Введение

 

Возникновение тензорного исчисления было подготовлено в 19 веке развитием теории алгебраических форм, с одной стороны, и теории квадратичных дифференциальных форм - с другой. Исследования в области теории дифференциальных квадратичных форм были непосредственно связаны с дифференциальной геометрией: с геометрией поверхностей (К. Гаусс) и с геометрией многомерного метрического пространства (Б. Риман). Современную форму тензорному исчислению придал итальянский математик Г. Риччи-Курбастро, поэтому тензорное исчисление иногда называется исчислением Риччи. Идеи Риччи-Курбастро первоначально не получили широкого распространения. Внимание к ним возросло после появления (1915-16) общей теории относительности А. Эйнштейна, математическая часть которой целиком основана на тензорном исчислении.

Тензор (от лат. tensus - напряжённый, натянутый), математический термин, появившийся в середине 19 века и с тех пор применяющийся в двух различных смыслах. Наибольшее распространение термин «тензор» получил в современном тензорном исчислении, где это название присваивается особого рода величинам, преобразующимся по особому закону. В механике, особенно в теории упругости, термин «тензор» широко применяется как синоним симметрического аффинора, то есть линейного оператора F, преобразующего вектор х в вектор , и симметрического в том смысле, что скалярное произведение уFх не меняется при перестановке векторов х и у. Здесь термин был первоначально связан с малыми растяжениями (и сжатиями), возникающими при упругой деформации (откуда и название «тензор»), а затем перенесён в другие области механики. Так появились тензор деформации, тензор напряжения, тензор инерции и др.



Линейные преобразования

 

Пусть переменные  преобразуются в новые  с помощью линейного преобразования

 

 

где  - константы (все индексы пробегают значения 1, 2, 3..., n независимо друг от друга.). Применяя условие о суммировании, можем записать эту систему уравнений в виде

 

                                      (1.1)

 

Мы предполагаем, что определитель преобразования  не равен нулю. Пусть  является алгебраическим дополнением элемента  в определителе c деленным на величину ( - обратная матрица). Тогда

 

                           (1.2)

 

и мы можем разрешить систему уравнений (1.1) относительно x

 

                                 (1.3)

 

Это показывает, что данное преобразование обратимо.

Кроме того, если  мы имеем


 

т. е. тождественное преобразование.

Если перейти сначала от переменных к по (1.1), а затем от переменных к при помощи преобразования

 

то мы видим, что переход от первоначальных переменных  к определяется формулой

 

 

где

 

 

Это преобразование, следовательно, также линейное.

Говорят, что совокупность преобразований образует группу, когда она удовлетворяет следующим условиям: 1) если преобразования от к и от к принадлежат данной совокупности, то преобразование от к   также принадлежат к ней; 2) совокупность преобразования содержит тождественное и обратное преобразования.

Таким образом, совокупность линейных преобразований образует группу.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: