Выбор гибких и жестких шин

 

Выбор токопроводов на стороне 220 кВ и 35 кВ

В РУ 35 кВ и выше применяются гибкие шины, выполненные проводами АС, обладающие малым удельным сопротивлением и хорошей механической прочностью.

1) При проектировании жестких и гибких шин выбор сечений производят по допустимым значениям тока для стандартных сечений. Основным параметром для выбора сечения является величина рабочего тока.

2) Выбранное сечение необходимо проверить по нагреву в аварийном режиме, когда одна из цепей отключена:

 

Iдл доп > Iав, (5.26)

 

где Iдл доп –длительно допустимый ток для выбранного сечения линии, A.

Iав – аварийный ток, A.

Аварийный ток определяется по формуле:

 

Iав=2· Iраб; (5.27)

 

3) По условиям короны:

 

1,07∙Е ≤ 0,9∙Е0;(5.28)

 

где Е – напряженность электрического поля около поверхности провода, кВ/см;

Е0 – начальная критическая напряженность электрического поля, кВ/см;

 

Е0 = ,(5.29)

 

где m – коэффициент, учитывающий шероховатость поверхности провода (для многопроволочных проводов m=0,82);

r0 – радиус провода, см;

Напряженность электрического поля около поверхности нерасщепленного провода:

 

Е = ;(5.30)

 

где U – линейное напряжение, кВ;

Dср – среднегеометрическое расстояние между проводами фаз, см;

При горизонтальном расположении фаз:

 

Dср = 1,26∙D,(5.31)

 

где D – расстояние между проводами фаз (для U=220 кВ – D=1800 мм,U=35 кВ – D=400 мм), см; [8],

Напряженность электрического поля около поверхности расщепленного провода:

 

Е = ,(5.32)

 

где k – коэффициент, учитывающий количество проводов n в фазе;

rэк – эквивалентный радиус проводов, см;

4) Выбранные провода должны быть проверены по ветровым нагрузкам и нагрузкам по гололеду в соответствии с ПУЭ.

 

Fэ ≥ Fminмех;(5.33)

 

Минимальное сечение по условию механической прочности для III района по гололеду и проводов из сталеалюминия:

Fminмех = 50 мм2.

 

qmin=

 

5) На термическое и электродинамическое действия токов короткого замыкания проверяют гибкие шины РУ при I(3)по> 20 кA.

Если какое-либо из условий проверки не выполняется, следует увеличить сечение провода.

Выберем сечение проводов для гибкой ошиновки РУВН:

1) Выбор сечения по допустимому току:

Рабочий ток в цепи трансформатора на РУВН:

Iраб = 118 А принимаем провод АС 240/32;

2) Проверка выбранного сечения на нагрев провода:

Ток послеаварийного режима:

Iав = 2·Iраб = 236 А,

I дл доп = 605 А,

605 А > 236 А.

3) Проверка выбранного сечения по условию короны:

1,07∙Е ≤ 0,9∙Е0;

Е0 = = 29,82 кВ/см;

Е = = = 13,5 кВ/см;

1,07∙13,5= 14,45 кВ/см  0,9 ∙29,82= 26,84 кВ/см.

4) Проверка выбранного сечения по механическим нагрузкам:

F ≥ Fminмех,

240 мм2 > 50 мм2

qmin= мм2

q≥qmin - условие выполняется

5) Проверка по термическому и электродинамическому действию токов короткого замыкания:

Гибкие провода, по которым возможно протекание тока короткого замыкания меньше 20 кА термическую и электродинамическую стойкость не проверяются.

Все условия выполняются. Окончательно принимаем к установке гибкие шины из сталеалюминевых проводов АС 240.

Выберем сечение проводов для гибкой ошиновки РУСН:

1) Выбор сечения по допустимому току:

Iраб = 462 А, принимаем провод АС 300/32;

2) Проверка выбранного сечения на нагрев провода:

Ток послеаварийного режима:

Iав = 2 Iраб = 924 А,

I дл доп = 1000 А

1000 А > 924 А.

3) Проверка выбранного сечения по условию короны:

1,07∙Е ≤ 0,9∙Е0;

Е0 = = 28,82 кВ/см;

Е =  = = 4,19 кВ/см;

1,07∙4,19= 4,49 кВ/см  0,9 ∙28,82= 25,34 кВ/см.

4) Проверка выбранного сечения по механическим нагрузкам:

F ≥ Fminмех,

300 мм2 > 50 мм2.

qmin= =83 мм2

q≥qmin - условие выполняется

5) Проверка по термическому и электродинамическому действию токов короткого замыкания:

Гибкие провода, по которым возможно протекание тока короткого замыкания меньше 20 кА термическую и электродинамическую стойкость не проверяются.

Все условия выполняются. Окончательно принимаем к установке гибкие шины, с расщепленными надвое жилами, из алюминиевых проводов АС 240.

Выбор жестких шин на стороне 10 кВ

Для общей ошиновки предусматриваем алюминиевые шины прямоугольного сечения.

Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины. Концы шин на изоляторе имеют скользящее крепление через продольные овальные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилие, возникающее при температурных удлинениях шин, не передавалось на аппарат.

1.Выбираем сечение шин по длительно допустимому току нагрузки:

Imax = 981 А;

Принимаем однополюсные шины алюминиевые прямоугольного сечения

S=80×8, с Iдл.доп =1320 А;

Так как Iдл.доп.>Imax, то шины выбраны правильно. (5.34);

2. Проверка по термической стойкости.

Для шин, выполненных из алюминия допустимая температура нагрева при коротком замыкании 200 0С, коэффициент C=91 А·с1/2 /мм. Исходя из этого определяется минимально допустимое по нагреву сечение:

 

qminтерм =  = = 76мм2, (5.35);

 

где Bк – тепловой импульс при протекании тока короткого замыкания.

Для выбранных шин qmin составляет 480 мм2,

qminтерм < qдоп, условие выполняется,

3. Проверка на механическую прочность.

При механическом расчете однополюсных шин наибольшая сила f, действующая на шину средней фазы (при расположении шин в одной плоскости), определяется при трехфазном коротком замыкании по формуле:

 

f= (5.36);

 

где iуд – ударный ток при трехфазном коротком замыкании, A;

l – длина пролета между опорными изоляторами шинной конструкции, м; (рекомендуется l = 1-1,5 м);

а – расстояние между фазами, м;

Сила f создает изгибающий момент (М), Н·м, при расчете которого шина рассматривается как многопролетная балка, свободно лежащая на опорах.

Выбранные шины проверяем на динамическую устойчивость:

 

f= = = 117,54 кг·с/см2 – (5.37);

 

f - сила, действующая на шину.

Сила f создает изгибающий момент (М), Н·м, при расчете которого шина рассматривается как многопролетная балка, свободно лежащая на опорах.

 

 

момент сопротивления шины относительно оси, перпендикулярной действию силы, см3,

=20 см3

Напряжение в материале шин, Мпа, возникающее при воздействии σрасч изгибающего момента:

 

σрасч =  = = 8,82 МПа,

 

Шины механически прочны, если выдерживается условие:

σрасч ≤ σдоп

σдоп = 40 Мпа, [1,табл. 4.2]

Окончательно принимаем шины Sm =80 × 8 алюминиевые марки АДО

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: