Геометрический смысл понятия производной

Вступление

Современный экономист должен хорошо владеть количественными методами анализа. К такому выводу нетрудно прийти практически с самого начала изучения экономической теории. При этом важны как знания традиционных математических курсов (математический анализ, линейная алгебра, теория вероятностей), так и знания, необходимые непосредственно в практической экономике и экономических исследованиях (математическая и экономическая статистика, теория игр, эконометрика и др.).

Математика является не только орудием количественного расчета, но также методом точного исследования. Она служит средством предельно четкой и ясной формулировки экономических понятий и проблем.

Ф.Энгельс в своё время заметил, что "лишь дифференциальное исчисление даёт естествознанию возможность изображать математически не только состояния, но и процессы: движение". Поэтому целью моей работы является выяснить, каков экономический смысл производной,какие новые возможности для экономических исследований открывает дифференциальное исчисление, а также исследовать применение производной при решении различных видов задач по экономической теории.

 


1. Определение производной

 

Пусть функция y=f(х) определена в некоторой окрестности точки х0. Для любой точки х из этой окрестности приращение D x определяется формулой D x=х – х0, откуда х=х0+ D x.

Приращением функции y=f(x) в точке х0 называется разность

 

D у=f(x) – f(x0)=f(x0+ D x) – f(x0).

Производной от функции у=f(x) в точке х0 называется предел отношения приращения функции к приращению аргумента (), когда приращение аргумента стремится к нулю (D x0).

Производная функции у=f(x) в точке х0 обозначается y'(х0) или f'(х0). Определение производной можно записать в виде формулы:

 

'()= = .

 

Если функция в точке х0 имеет конечную производную, то она называется дифференцируемой в точке х0. Если она дифференцируема во всех точках промежутка X, то говорят, она дифференцируема на всём этом промежутке.

Конечно,  может не существовать. В этом случае говорят, что функция f(x) не имеет производной в точке х0. Если  равен  или , то говорят, что функция f(x) имеет в точке х0 бесконечную производную (равную  или , соответственно).




Геометрический смысл понятия производной

 

Пусть на плоскости x0y дана непрерывная кривая y=f(x) (см. рис. 1).

Рассмотрим на графике кривой точки Mo(xo;f(xo)) и M1(xo+Dx; f(xo+Dx)). Проведем секущую MoM1. Пусть угол наклона секущей MoM1 относительно оси . Если существует предел , то прямая, проходящая через Mo и образующая с осью угол , называется касательной к графику данной кривой в точке Mo. Таким образом, под касательной к кривой y=f(х) в точке Mo естественно понимать предельное положение секущей MoM1, к которому она стремится, когда D x ® 0.

Пусть N(xo+Dx; f(xo)) – точка, дополняющая отрезок MoM1 до прямоугольного треугольника MoM1N. Так как сторона MoN параллельна оси 0 х, то

 

 

Переходя к пределу в левой и правой частях этого равенства при D x0, получим

 

 

Поэтому геометрический смысл производной состоит в том, что f’(x0) – это тангенс угла наклона (угловой коэффициент) касательной к графику y=f(х) в точке (xo; f(xo)).

Найдём уравнение касательной к графику в точке Mo(xo; f(xo)) в виде y=kx+b. Так как Mo f(x), то должно выполняться равенство f(x0)=kx0+b, откуда b= f(x0) – kx0. Следовательно, касательная задаётся уравнением


y=kx+f(x0) – kx0=f(x0)+k(x – x0).

 

Поскольку k=f'(x0), то уравнение касательной имеет вид

y=f(x0)+f'(x0)(x – x0).

 

Как вычисляют производную?

1. Записывают функцию в виде y=f(х).

2. Вычисляют Dy – приращение функции: D у=f(x+ D x) – f(x).

3. Составляют отношение

4. Представляют, что Dx стремится к нулю, и переходят к пределу = y'(х0).

5. Вычисляют производную в точке х0: y'(х) = y'(х0).

Операция вычисления производной называется дифференцированием.

Примеры дифференцирования:

 

1.

D y=a(x+ D x)2 – ax2=2ax D x+a D x2;

 

= 2ax +D x; = 2ax, Þ (ах2)'=2ax.

 

2.

;

 

= ;


= 3x2, Þ (x3)'=3x2.

 

3.

;

 

= , Þ

 



Дифференциал функции

Дифференциалом функции f(х) в точке х0 называется линейная функция приращения вида

Дифференциал функции y=f(х) обозначается dy или df(x0). Главное назначение дифференциала состоит в том, чтобы заменить приращение  на линейную функцию от , совершив при этом, по возможности, меньшую ошибку.

Наличие конечной производной  даёт возможность представить приращение функции  в виде

 

 

где  при . Из этого следует, что ошибка в приближённом равенстве  (равная ) является бесконечно малой более высокого порядка, чем , когда . Это часто используют при приближённых вычислениях.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: