Билет № 11. 1. Деление клеток — основа роста и размножения организмов

передачи наследственной инфор­мации от материнского организма (клетки) к дочернему, что обеспе­чивает их сходство. Деление кле­ток образовательной ткани — при­чина роста корня и побега верхуш­ками.

2. Ядро и расположенные в них хромосомы с генами — носи­тели наследственной информации о признаках клетки и организма. Число, форма и размеры хромо­сом, набор хромосом — генетиче­ский критерий вида. Роль деления клетки в обеспечении постоянства числа, формы и размера хромосом. Наличие в клетках тела дипло-идного (46 у человека), а в поло­вых — гаплоидного (23) набора хромосом. Состав хромосомы — комплекс одной молекулы ДНК с белками.

3. Жизненный цикл клетки: интерфаза (период подготовки

клетки к делению) и митоз (деле­ние).1) Интерфаза — хромосомы дес-пирализованы (раскручены). В ин­терфазе происходит синтез белков, липидов, углеводов, АТФ, самоуд­воение молекул ДНК и образова­ние в каждой хромосоме двух хро-матид;

2) фазы митоза (профаза, мета-фаза, анафаза, телофаза) — ряд по­следовательных изменений в клет­ке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование верете­на деления, расположение хромо­сом в центре клетки, присоедине­ние к ним нитей веретена деления;в) расхождение хроматид к проти­воположным полюсам клетки (они становятся хромосомами);

г) формирование клеточной пере­городки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одинаковым набором хромосом (по 46 в материнской и дочерних клетках человека).

4. Значение митоза — образо­вание из материнской двух дочер­них клеток с таким же набором хромосом, равномерное распреде­ление между дочерними клетками генетической информации.

2.1. Антропогенез — длитель­ный исторический процесс станов­ления человека, который происхо­дит под влиянием биологических и социальных факторов. Сходство человека с млекопитающими — доказательство его происхождения от животных.

2. Биологические факторы эво­люции человека — наследствен­ная изменчивость, борьба за су­ществование, естественный отбор. 1) Появление у предков человека 8-образного позвоночника, сводча­той стопы, расширенного таза, прочного крестца — наследствен­ные изменения, которые способст­вовали прямохождению; 2) изме­нения передних конечностей — противопоставление большого па­льца остальным пальцам — фор­мирование руки. Усложнение строения и функций головного мозга, позвоночника, руки, горта­ни — основа формирования трудо­вой деятельности, развития речи, мышления.

3. Социальные факторы эво­люции — труд, развитое сознание, мышление, речь, общественный образ жизни. Социальные факто­ры — основное отличие движущих сил антропогенеза от движущих сил эволюции органического ми­ра.

Главный признак трудовой де­ятельности человека — способ­ность изготавливать орудия тру­да. Труд — важнейший фактор эволюции человека, его роль в за­креплении морфологических и фи­зиологических изменений у пред­ков человека. 4. Ведущая роль биологиче­ских факторов на ранних этапах эволюции человека. Ослабление их роли на современном этапе раз­вития общества, человека и воз­растание значения социальных факторов.

5. Стадии эволюции человека;

древнейшие, древние, первые сов­ременные люди. Ранние стадии

эволюции — австралопитеки, чер­ты их сходства с человеком и чело­векообразными обезьянами (стро­ение черепа, зубов, таза). Находки остатков человека умелого, его сходство с австралопитеками.

6. Древнейшие люди — пите­кантроп, синантроп, развитие у них лобных и височных долей мозга, связанных с речью, — до­казательство ее зарождения. Находки примитивных орудий труда — доказательство зачатков трудовой деятельности. Черты обе­зьян в строении черепа, лицевого отдела, позвоночника древнейших людей.

7. Древние люди — неандерта­льцы, их большее сходство с чело­веком по сравнению с древнейши­ми людьми (больший объем мозга, наличие слаборазвитого подборо­дочного выступа), использование более сложных орудий труда, ог­ня, коллективная охота.

8. Первые современные лю­ди — кроманьонцы, их сходство с современным человеком. Наход­ки разнообразных орудий труда, наскальных рисунков — свидете­льство высокого уровня их раз­вития.

3. Надо исходить из того, что каж­дый сорт имеет свой генотип. Зна­чит, один сорт отличается от дру­гого и по фенотипу (длина колоса, число колосков и зерновок в них, окраска, остистость или ее отсутст­вие). Причины различий по фено­типу: различия в генотипе, в усло­виях выращивания, вызывающих модификационные изменения.

с

Билет № 121. Гаметы — половые клетки, участие их в оплодотворении, об­разовании зиготы (первая клетка нового организма). Результат оп­лодотворения — удвоение числа хромосом, восстановление их дип-лоидного набора в зиготе. Особен­ности гамет — одинарный, гапло-идный набор хромосом по срав­нению с диплоидным набором хромосом в клетках тела. 2. Этапы развития половых клеток: 1) увеличение путем мито­за числа первичных половых кле­ток с диплоидным набором хромо­сом; 2) рост первичных половых клеток; 3) созревание половых клеток.

3. Мейоз — особый вид деления первичных половых клеток, в ре­зультате которого образуются га­меты с гаплоидным набором хро­мосом. Мейоз — два последовате­льных деления первичной половой клетки и одна интерфаза перед первым делением.

4. Интерфаза — период актив­ной жизнедеятельности клетки, синтеза белка, липидов, углево­дов, АТФ, удвоения молекул ДНК и образования двух хроматид из каждой хромосомы. 5. Первое деление мейоза, его особенности: конъюгация гомоло-гичных хромосом и возможный об­мен участками хромосом, расхож­дение в каждую клетку по одной гомологичной хромосоме, умень­шение их числа вдвое в двух обра­зовавшихся гаплоидных клетках. 6. Второе деление мейоза — отсутствие интерфазы перед деле­нием, расхождение в дочерние клетки гомологичных хроматид, образование половых клеток с гап­лоидным набором хромосом. Резу­льтаты мейоза: образование в се­менниках (или других органах) из одной первичной половой клетки четырех сперматозоидов, в яични­ках из одной первичной половой клетки одной яйцеклетки (три мелкие клетки при этом поги­бают).

2. 1. Важный признак вида — расселение его группами, популя­циями в пределах ареала. Попу­ляция — совокупность свободно скрещивающихся особей вида, ко­торые длительное время существу­ют относительно обособленно от других популяций на определен­ной части ареала. 2. Факторы, способствующие объединению особей в популя­ции, — свободное скрещивание (взаимоотношения полов), выращивание потомства (генетические связи), совместная защита от вра­гов, типы взаимоотношений орга­низмов разных видов: хищник— жертва, хозяин—паразит, симби­оз, конкуренция.

3. Популяция — структурная единица вида, характеризуется оп­ределенной численностью особей, ее изменениями, общностью зани­маемой территории, определенным соотношением возрастного и поло­вого состава. Изменение численно­сти популяций в определенных пре­делах, сокращение ее ниже до­пустимого предела — причина возможной гибели популяции. 4. Изменение численности по­пуляций по сезонам и годам (мас­совое размножение в отдельные го­ды насекомых, грызунов). Устой­чивость численности популяций, особи которых имеют большую продолжительность жизни и низ­кую плодовитость. 5. Причины колебания числен­ности популяций: изменение ко­личества пищи, погодных усло­вий, экстремальные условия (на­воднения, пожары и пр.). Резкое изменение численности под влия­нием случайных факторов, превы­шение смертности над рождаемо­стью — возможные причины гибе­ли популяции. 6. Саморегуляция численности популяции. Вслед за возрастанием численности одних видов появ­ляются факторы, вызывающие ее ограничение. Так, возрастание чи­сленности растительноядных жи­вотных сопровождается увеличени­ем численности хищников, парази­тов. Вследствие этого происходит снижение численности раститель­ноядных животных, а затем и чис­ленности хищников. Таков меха­низм саморегуляции численности всех популяций, сохранения ее на определенном уровне.

3.д ля составления вариационного ряда надо определить размеры, массу семян фасоли (или листьев) и расположить их в порядке увели­чения размеров, массы. Для этого надо измерить длину или взвесить объекты и записать данные в по­рядке их увеличения. Под цифра­ми записать число семян каждого варианта. Выяснить, семена каких размеров (или массы) встречаются чаще, а каких — реже. Выявлена закономерность: наиболее часто встречаются семена средних раз­меров и массы, а крупные и мел­кие (легкие и тяжелые) — реже. Причины: в природе преобладают средние условия среды, а очень хо­рошие и очень плохие встречаются реже.

Билет № 131. Размножение — воспроизве­дение организмами себе подобных, передача наследственной инфор­мации от родителей потомству. Значение размножения — обеспе­чение преемственности между по­колениями, продолжение жизни вида, увеличение численности осо­бей в популяции и их расселение на новые территории.

2. Особенности полового раз­множения — возникновение ново­го организма в результате оплодот­ворения, слияния мужской и жен­ской гамет с гаплоидным набором хромосом. Зигота — первая клетка дочернего организма с диплоид-ным набором хромосом. Объедине­ние материнского и отцовского на­боров хромосом в зиготе — причи­на обогащения наследственной информации потомства, появле­ния у него новых признаков, кото­рые могут повысить приспособлен­ность к жизни в определенных ус­ловиях, возможность выжить и оставить потомство.

3. Оплодотворение у растений. Значение водной среды для про­цесса оплодотворения у мхов и па­поротников. Процесс оплодотворе­ния у голосеменных в женских шишках, а у покрытосеменных — в цветке. 4. Оплодотворение у живот­ных. Внешнее оплодотворение — одна из причин гибели значите­льной части половых клеток и зи­гот. Внутреннее оплодотворение у членистоногих, пресмыкающих­ся, птиц и млекопитающих — при­чина наибольшей вероятности об­разования зиготы, защиты зароды­ша от неблагоприятных условийсреды (хищников, колебаний тем­пературы и пр.). 5. Эволюция полового размно­жения по пути возникновения спе­циализированных клеток (гапло-идных гамет), половых желез, половых органов. Пример: у голо­семенных на чешуйках шишки располагаются пыльники (место образования мужских половых клеток) и семязачатки (место образования яйцеклетки); у по­крытосеменных в пыльниках фор­мируются мужские гаметы, а в се-мязачатке — яйцеклетка; у позво­ночных животных и человека в семенниках образуются сперма­тозоиды, а в яичниках — яйцек­летки.

2.1. Наследственность — свой­ство организмов передавать осо­бенности строения и жизнеде­ятельности от родителей потом­ству. Наследственность — основа сходства родителей и потомства, особей одного вида, сорта, поро­ды.

2. Размножение организмов — основа передачи наследственной информации от родителей потом­ству. Роль половых клеток и опло­дотворения в наследовании при­знаков. 3. Хромосомы и гены — мате­риальные основы наследственно­сти, хранения и передачи наслед­ственной информации. Постоянст­во формы, размеров и числа хромосом, хромосомный набор — главный признак вида.

4. Диплоидный набор хромо­сом в соматических и гаплоидный в половых клетках. Митоз — деле ние клетки, обеспечивающее пос­тоянство числа хромосом и дипло-идный набор в клетках тела, пере­дачу генов от материнской клетки к дочерним. Мейоз — процесс уменьшения вдвое числа хромосом в половых клетках; оплодотво­рение — основа восстановления диплоидного набора хромосом, пе­редачи генов, наследственной ин­формации от родителей потом­ству. 5. Строение хромосомы — ком­плекс молекулы ДНК с молекула­ми белка. Расположение хромо­сом в ядре, в интерфазе в виде тон­ких деспирализованных нитей, а в процессе митоза в виде компакт­ных спирализованных телец. Ак­тивность хромосом в деспирализо-ванном виде, образование в этот период хроматид на основе удвое­ния молекул ДНК, синтеза иРНК, белка. Спирализация хромосом — приспособленность к равномерно­му распределению их между до­черними клетками в процессе де­ления. 6. Ген — участок молекулы ДНК, содержащий информацию о первичной структуре одной моле­кулы белка. Линейное расположе­ние сотен и тысяч генов в каждой молекуле ДНК. 7. Гибридологический метод изучения наследственности. Его сущность: скрещивание родитель­ских форм, различающихся по оп­ределенным признакам, изучение наследования признаков в ряду по­колений и их точный количествен­ный учет. 8. Скрещивание родительских форм, наследственно различаю­щихся по одной паре признаков, —

моногибридное, по двум — ди-гибридное скрещивание. Откры­тие с помощью этих методов пра­вила единообразия гибридов пер­вого поколения, законов расщеп­ления признаков во втором поко­лении, независимого и сцепленно­го наследования.

3. Надо приготовить микроскоп к работе: положить микропрепарат, осветить поле зрения микроскопа, найти клетку, ее оболочку, цито­плазму, ядро, вакуоли, хлоропла-сты. Оболочка придает клетке фор­му и защищает ее от внешнего воздействия. Цитоплазма обеспе­чивает связь между ядром и орга­ноидами, которые в ней располага­ются. В хлоропластах на мембра­нах гран расположены молекулы хлорофилла, который поглощает и использует энергию солнечного света в процессе фотосинтеза. В яд­ре находятся хромосомы, с помо­щью которых осуществляется пе­редача наследственной информа­ции от клетки к клетке. Вакуоли содержат клеточный сок, продук­ты обмена, способствуют поступле­нию воды в клетку.

Билет № 141. Образование зиготы, ее первые деления — начало инди­видуального развития организма при половом размножении. Эмб­риональный и постэмбриональ­ный периоды развития организ­мов. 2. Эмбриональное развитие — период жизни организма с момен­та образования зиготы до рожде­ния или выхода зародыша из яй­ца. 3. Стадии эмбрионального раз­вития (на примере ланцетника):

1) дробление — многократное де­ление зиготы путем митоза. Обра­зование множества мелких кле­ток (при этом они не растут), а за­тем шара с полостью внутри — бластулы, равной по размерам зи­готе; 2) образование гаструлы — двухслойного зародыша с наруж­ным слоем клеток (эктодермой) и внутренним, выстилающим по­лость (энтодермой). Кишечнополо-стные, губки — примеры живот­ных, которые в процессе эволюции остановились на двухслойной ста­дии; 3) образование трехслойного зародыша, появление третьего, среднего слоя клеток — мезодер­мы, завершение образования трех зародышевых листков; 4) заклад­ка из зародышевых листков раз­личных органов, специализация клеток.

4. Органы, формирующиеся из зародышевых листков.5. Взаимодействие частей заро­дыша в процессе эмбрионального развития — основа его целостно­сти. Сходство начальных стадий развития зародышей позвоночных животных — доказательство их родства. 6. Высокая чувствительность зародыша к воздействию факто­ров среды. Вредное влияние алко­голя, наркотиков, курения на раз­витие зародыша, на подростка и взрослого человека.

2.1. Г. Мендель — основополож­ник генетики. Открытие им зако­нов наследственности на основе применения методов скрещива­ния и анализа потомства.

2. Изучение Г. Менделем гено­типов и фенотипов исследуемых организмов. Фенотип — совокуп­ность внешних и внутренних при­знаков, особенностей процессов жизнедеятельности. Генотип — совокупность генов в организме. Доминантный признак — преобла­дающий, господствующий; рецес­сивный — исчезающий, подавляе­мый признак. Гомозиготный организм содержит аллельные только доминантные (АА) или только ре­цессивные (аа) гены, которые контролируют формирование оп­ределенного признака. Гетерози-готный организм содержит в клет­ках доминантный и рецессивный гены (Аа). Они контролируют фор­мирование альтернативных при­знаков.

3. Правило единообразия (до­минирования) признаков у гибри­дов первого поколения — при скрещивании двух гомозиготных организмов, различающихся по одной паре признаков (например, желтая и зеленая окраска семян гороха), все потомство гибридов первого поколения будет единооб­разным, похожим на одного из ро­дителей (желтые семена).

4. Запись схемы скрещивания, отражающая правило единообра­зия гибридов первого поколения.

3 Для обнаружения ферментов надо на кусочки сырого и вареного картофеля нанести по капле пе-роксида водорода (НдОд), наблю­дать, где произойдет его «вскипа­ние». Под влиянием фермента пероксидазы в клетках сырого картофеля происходит реакция разложения пероксида водорода с выделением кислорода, вызываю­щего «вскипание». При варке кар­тофеля фермент разрушается, по­этому на срезе вареного картофеля «вскипания» не происходит.

Билет № 151. Индивидуальное развитие организма (онтогенез) — период жизни, который при половом раз­множении начинается с образова­ния зиготы, характеризуется необ­ратимыми изменениями (увеличе­нием массы, размеров, появлением новых тканей и органов) и завер­шается смертью.

2. Зародышевый (эмбриональ­ный) и послезародышевьш (пос­тэмбриональный) периоды инди­видуального развития организма.

3. Послезародышевое развитие (приходит на смену зародышевому) — период от рождения или вы­хода зародыша из яйца до смерти. Различные пути послезародыше-вого развития животных — пря­мое и непрямое: 1) прямое развитие — рождение потомства, внешне похожего на взрослый организм. Примеры:

развитие рыб, пресмыкающихся, птиц, млекопитающих, некоторых видов насекомых. Так, малек ры­бы похож на взрослую рыбу, уте­нок на утку, котенок на кошку;

2) непрямое развитие — рожде­ние или выход из яйца потомства, отличающегося от взрослого орга­низма по морфологическим при­знакам, образу жизни (типу пита­ния, характеру передвижения). Пример: из яиц майского жука по­являются червеобразные личин­ки, живут в почве и питаются кор­нями в отличие от взрослого жука (живет на дереве, питается листь­ями).Стадии непрямого развития на­секомых: яйцо, личинка,куколка, взрослая особь. Особенности жиз­ни животных на стадии яйца и ку­колки — они неподвижны. Актив­ный образ жизни личинки и взрос­лого организма, разные условия обитания, использование разной пищи.

4. Значение непрямого разви­тия — ослабление конкуренции между родителями и потомством, так как они поедают разную пищу, у них разные места обитания. Не­прямое развитие — важное при­способление, возникшее в процес­се эволюции. Оно способствует ослаблению борьбы за существова­ние между родителями и потомст­вом, выживанию животных на ранних стадиях послезародышево-го развития.

2.1. Изучение Г. Менделем на­следственности с помощью гибри­дологического метода — скре­щивания родительских форм, раз­личающихся по определенным признакам, и изучение характера их наследования в ряду поколе­ний.

2. Скрещивание гомозиготнои доминантной и рецессивной осо­бей, появление в первом гибрид­ном поколении всех особей с доми­нантным признаком. Причина: все гибридные особи имеют гетерози-готный генотип, например, Аа, в котором доминантный ген подав­ляет рецессивный. 3. Проявление закона расщеп­ления при скрещивании между собой гибридов первого поколения Аа хАа. Дальнейшее размножение гибридов — причина расщепле­ния, появления в потомстве Р^ особей с рецессивными призна­ками, составляющих примерно четвертую часть от всего потом­ства. 4. Причины отсутствия рас­щепления во втором и последую­щих поколениях гомозиготных рецессивных особей — образова­ние гамет одного типа, наличие в них лишь рецессивного гена, на­пример, гамет с генами о. Слияние при оплодотворении мужской и женской гамет с генами а и а — причина образования гомозиготно-го потомства с рецессивным гено­типом — аа.

5. Гомозиготы — организмы, содержащие в клетках два одина- Биология

ковых гена по данному признаку (АА либо аа), отсутствие у них рас­щепления признаков в последую­щих поколениях. Гетерозиготы — организмы, содержащие в клет­ках разные гены по какому-либо признаку (Аа), дающие расщепле­ние признаков в последующих по­колениях.

3. Надо исходить из того, что ДНК служит матрицей для иРНК, она обеспечивает последовательность нуклеотидов в иРНК. Двойная спи­раль ДНК с помощью ферментов разъединяется, к одной ее цепи по­ступают нуклеотиды. На основе принципа дополнительности нукле­отиды располагаются и фиксируют­ся на матрице ДНК в строго опре­деленной последовательности. Так, к нуклеотиду Ц всегда присоеди­няется нуклеотид Г или наоборот:

к Г — Ц, & к нуклеотиду А—УРНК вместо тимина нуклеотид урацил). Затем нуклеотиды соеди­няются между собой и молекула иРНК сходит с матрицы.

Билет № 161. Ген — отрезок молекулы ДНК, носитель наследственной информации о первичной структу­ре одного белка. Локализация в одной молекуле ДНК нескольких сотен генов. Каждая молекула ДНК — носитель наследственной информации о первичной структу­ре сотен молекул белка.

2. Хромосома — важная со­ставная часть ядра, состоящая из одной молекулы ДНК в соедине­нии с молекулами белка. Следова­тельно, хромосомы — носители на­следственной информации. Чис­ло, форма и размеры хромосом — главный признак, генетический критерий вида. Изменение числа, формы или размера хромосом — причина мутаций, которые часто вредны для организма. 3. Высокая активность деспи-рализованных хромосом в пери­од интерфазы. Самоудвоение мо­лекул ДНК, их участие в синтезе иРНК, белка. 4. Ген (отрезок молекулы ДНК) матрица для синтеза иРНК, а иРНК — матрица для синтеза белка. Матричный харак­тер реакций самоудвоения моле­кул ДНК, синтеза иРНК, белка — основа передачи наследственной информации от гена к признаку, который определяется молекула­ми белка. Многообразие белков, их специфичность, многофункциона­льность — основа формирования различных признаков у организ­ма, реализации заложенной в ге­нах наследственной информации 5. Самоудвоение хромосом, спи-рализация, четкий механизм их распределения между дочерними клетками в процессе митоза — путь передачи наследственной ин­формации от материнской к дочер­ним клеткам.

6. Путь передачи наследствен­ной информации от родителей по­томству: образование половых кле­ток с гаплоидным набором хромо­сом, оплодотворение, образование зиготы — первой клетки дочернего организма с диплоидным набором хромосом.

2.. Многообразие видов расте­ний, животных и других организ­мов, их закономерное расселе­ние в природе, возникновение в процессе эволюции относительно постоянных природных комплек­сов.

2. Биогеоценоз (экосистема) — совокупность взаимосвязанных видов (популяций разных видов), длительное время обитающих на определенной территории с отно­сительно однородными условиями. Лес, луг, водоем, степь — примеры экосистем.

3. Автотрофный и гетеротроф­ный способы питания организ­мов, получения ими энергии. Ха­рактер питания — основа связей между особями разных популя­ций в биогеоценозе. Использова­ние автотрофами (в основном рас­тениями) неорганических веществ и солнечной энергии, создание из них органических веществ. Испо­льзование гетеротрофами (живот­ными, грибами, большинством бактерий) готовых органических

веществ, синтезированных авто­трофами, и заключенной в них энергии.

4. Организмы — производите­ли органического вещества, по­требители и разрушители — основные звенья биогеоценоза. 1) Организмы-производители — ав-тотрофы, в основном растения, со­здающие органические вещества из неорганических с использова­нием энергии света; 2) организ­мы-потребители — гетеротрофы, питаются готовыми органически­ми веществами и используют за­ключенную в них энергию (живот­ные, грибы, большинство бакте­рий); 3) организмы-разрушители — гетеротрофы, питаются остатка­ми растений и животных, разру­шают органические вещества до неорганических (бактерии, гри­бы). 5. Взаимосвязь организмов про­изводителей, потребителей, раз­рушителей в биогеоценозе. Пище­вые связи — основа круговорота веществ и превращения энергии в биогеоценозе. Цепи питания — пути передачи вещества и энергии в биогеоценозе. Пример: растения —> растительноядное животное (за­яц) —> хищник (волк). Звенья в це­пи питания (трофические уров­ни): первое — растения, второе — растительноядные животные, тре­тьи — хищники.

6. Растения — начальное звено цепей питания благодаря их спо­собности создавать органические вещества из неорганических с ис­пользованием солнечной энергии. Разветвленность цепей питания:

особи одного трофического уровня прозводители) служат пищей для организмов нескольких видов другого трофического уровня (по­требителей).

7. Саморегуляция в биогеоце-нозах — поддержание численно­сти особей каждого вида на опреде­ленном, относительно постоянном уровне. Саморегуляция — причи­на устойчивости биогеоценоза. Его зависимость от разнообразия обитающих видов, многообразия цепей питания, полноты кругово­рота веществ и превращения энер­гии.

3. Надо учитывать, что наследова­ние признаков, контролируемых генами, расположенными в Х-хро-мосоме, будет происходить иначе, чем контролируемых генами, нахо­дящимися в аутосомах. Например, наследование гена гемофилии свя­зано с Х-хромосомой, в которой он расположен. Доминантный ген Н обеспечивает свертываемость кро­ви, а рецессивный ген Н — несвер­тываемость. Если женщина имеет в клетках два гена НИ., то у нее проявляется болезнь, если НН — болезнь не проявляется, но она яв­ляется носителем гена гемофи­лии. У мужчин гемофилия прояв­ляется при наличии одного гена Н, так как у него всего одна Хромосома.

 

Билет № 17 1. Г. Мендель — основополож­ник генетики, которая изучает наследственность и изменчивость организмов, их материальные ос­новы.

2. Открытие Г. Менделем пра­вила единообразия, законов рас­щепления и независимого насле­дования. Проявление правила еди­нообразия и закона расщепления во всех видах скрещивания, а за­кона независимого наследования — при дигибридном и полигибрид­ном скрещивании.

3. Закон независимого наследо­вания — каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногиб­ридном скрещивании). Пример:

при скрещивании растений гороха с желтыми и гладкими семенами (доминантные признаки) с расте­ниями с зелеными и морщинисты­ми семенами (рецессивные призна­ки) во втором поколении происхо­дит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части гладких и одна часть морщини­стых семян). Расщепление по од­ному признаку идет независимо от расщепления по другому.

4. Причины независимого на­следования признаков — располо­жение одной пары генов (Аа) в од­ной паре гомологичных хромосом, а другой пары (ВЬ) — в другой паре гомологичных хромосом. Поведе­ние одной пары негомологичных хромосом в митозе, мейозе и при оплодотворении не зависит от дру­гой пары. Пример: гены, определя­ющие цвет семян гороха, наследу­ются независимо от генов, опреде­ляющих форму семян.

2.1. Дубрава — устойчивый био-геоценоз, существует сотни лет, за­селен многими видами растений (около сотни) и животных (неско­лько тысяч), грибов, лишайников и др., длительное время занимает определенную территорию с отно­сительно однородными абиотиче­скими факторами (влажностью, температурой и др.).

2. Причины устойчивости дуб­равы — большое разнообразие видов, тесные связи между ними (пищевые, генетические), разнооб­разные приспособления к совмест­ному обитанию, сложившийся ме­ханизм саморегуляции — поддер­жания численности особей на относительно постоянном уровне.

3. Наличие в дубраве трех зве­ньев: организмов — производите­лей, потребителей и разрушителей органического вещества. Различ­ный характер питания, способов получения энергии организмами этих звеньев — основа пищевых связей, круговорота веществ и по­тока энергии. Живое население дубравы — биотические факторы,

факторы неживой природы — аби­отические.

4. Организмы — производите­ли дубравы. Многолетние древес­ные широколиственные и мелко­лиственные растения — основные производители органического ве­щества. Ярусное расположение растений, наличие 4—5 ярусов — приспособленность к эффективно­му использованию света, влаги, территории.

5. Высокая продуктивность ор­ганизмов-производителей (расте­ний) — причина заселения дубра­вы множеством видов животных от простейших до млекопитаю­щих. Наибольшее разнообразие видов членистоногих в дубраве:

растительноядных, хищных, пара­зитов.

6. Особенности цепей питания дубравы — их разнообразие, боль­шое число звеньев, разветвлен-ность (сети питания — один вид служит пищей для нескольких ви­дов). Эффективное использование органического вещества и энергии, полный круговорот веществ.

7. Жуки-мертвоеды, кожееды, личинки падальных мух, грибы, гнилостные бактерии — организ­мы-разрушители, расщепление ими отмерших частей растений, остатков животных и продуктов их жизнедеятельности до минера­льных веществ. Использование растениями в процессе почвенного питания минеральных веществ.

8. Саморегуляция в дубраве — совместное существование раз­личных видов с разными спосо­бами питания. Численность особей каждого вида ограничивается определенным уровнем, а полного

уничтожения их не происходит. Пример: зайцы, лоси, насекомые не уничтожают полностью рас­тения, которыми они питаются;

лисы, волки ограничивают чис­ленность популяций зайцев, поле­вок.

9. Ярусное расположение рас­тений, теневыносливость трав, ранневесеннее цветение лукович­ных растений — примеры приспо­собленности организмов к биоти­ческим и абиотическим факторам среды.

3. Надо приготовить микроскоп к работе: осветить поле зрения, с по­мощью винтов найти четкое изо­бражение, рассмотреть клетку, в которой ядро обособлено от цито­плазмы оболочкой, хромосомы имеют вид тонких нитей и тесно переплетены.

Билет 181. Десятки и сотни тысяч генов в клетке — основа формирования большого разнообразия признаков в организме. Несоответствие числа хромосом (единицы, десятки) чис­лу генов (тысячи, сотни тысяч) — доказательство расположения в каждой хромосоме множества ге­нов.

2. Группа сцепления — хромо­сома, в которой расположено боль­шое число генов. Соответствие групп сцепления числу хромосом.

3. Неприменимость закона не­зависимого наследования к при­знакам, формирование которых определяется генами, расположен­ными в одной группе сцепления — хромосоме. Закон сцепленного на­следования, открытый Т. Морга­ном, — сцепление генов,локализо­ванных в одной хромосоме. Совме­стное наследование генов одной группы сцепления (при мейозе хромосомы со всей группой генов попадают в одну гамету, а не рас­ходятся в разные гаметы).

4. Кроссинговер — перекрест хромосом и обмен участками генов между гомологичными хромосома­ми — причина нарушения сцеп­ленного наследования, появления в потомстве особей с перекомбини­рованными признаками. Пример:

при скрещивании дрозофил с се­рым телом и нормальными крыль­ями и дрозофил с темным телом и зачаточными крыльями появляет­ся потомство с родительскими фе­нотипами и небольшое число осо­бей с перекомбинацией признаков:

серое тело — зачаточные крылья и темное тело — нормальные кры­лья.

5. Зависимость частоты пере­креста, перекомбинации генов от расстояния между ними: чем боль­ше расстояние между генами, тем больше вероятность обмена участ­ками генов. Использование этой зависимости для составления гене­тических карт. Отражение в гене­тических картах места расположе­ния генов в хромосоме, расстояния между ними. Значение перекреста хромосом — возникновение новых комбинаций генов, повышение на­следственной изменчивости, игра­ющей большую роль в эволюции и селекции.

2.1. Хвойный лес — биогеоценоз, который занимает длительное вре­мя определенную территорию с от­носительно однородными условия­ми, в нем обитает совокупность популяций разных видов, проис­ходит круговорот веществ.

2. Наличие в биогеоценозе хвойного леса трех звеньев: про­изводителей органического веще­ства, его потребителей и разруши­телей.

1) Организмы-производители — в основном виды хвойных, а также некоторые виды мелко- и широко­лиственных древесных растений, лишайники и мхи, небольшое чис­ло видов кустарников и трав. Ярусное расположение растений и животных — приспособление к бо­лее полному использованию света, питательных веществ, террито­рии. Причина небольшого числа ярусов в лесу — недостаток света;

2) организмы-потребители — раз­ные виды членистоногих, земно­водных, пресмыкающихся, птиц и

млекопитающих, среди них одни — растительноядные, другие — хищ­ные, третьи — паразиты;

3) организмы-разрушители — черви, грибы, бактерии.

3. Биотические факторы сре­ды — все взаимодействующие меж­ду собой живые обитатели хвойно­го леса. Абиотические факторы — свет, влажность, температура, воз­дух и др.

4. Небольшое число видов по сравнению с дубравой, недостаток света, бедный олад, малопло­дородная почва обусловили ко­роткие цепи питания в хвойном лесу. Пример: растения (хвойные и др.) —> растительноядные жи­вотные (белка) —> хищные (ли­сица).

5. Саморегуляция — механизм поддержания численности популя­ций на определенном уровне (осо­би одного вида не уничтожают полностью особей другого вида, а лишь ограничивают их числен­ность). Значение саморегуляции для сохранения устойчивости эко­системы.

3.

Надо приготовить микроскоп к работе: положить микропрепарат на предметный столик, осветить поле зрения микроскопа, с помо­щью винтов добиться четкого изображения, найти клетку со следующими признаками про­фазы: ядро имеет оболочку, в нем расположены компактные тель­ца — хромосомы, каждая из них состоит из двух хроматид (хотя хроматиды не видны в световой микроскоп).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: