Структура и функции белков

 

В результате работ Т. Осборна, Г. Гофмейстера, А. Гюрбера, Ф. Шульца и многих других в конце XIX в. были получены многие животные и растительные белки в кристаллическом виде. Примерно в это же время при помощи разных физических методов были установлены молекулярные веса некоторых белков. Так, в 1891 г. А. Сабанеев и Н. Александров: сообщили, что молекулярный вес овальбумина составляет 14 000; в 1905 г. Э. Рейд установил, что молекулярный вес гемоглобина равен 48 000. Полимерная структура белков была раскрыта в 1871 г. Г. Глазиветцом и Д. Габерманом. Идея о пептидной связи отдельных аминокислотных остатков в белках была высказана Т. Куртиусом (1883). Работы по химической конденсации аминокислот (Э. Шаал, 1871; Г. Шифф, 1897; Л. Бальбиано и Д. Траскиатти, 1900) и синтезу гетерополипептидов (Э. Фишер, 1902–1907, Нобелевская премия, 1902) привели к разработке основных принципов химической структуры белков.

Первый кристаллический фермент (уреаза) был получен в 1926 г. Дж. Самнером (Нобелевская премия, 1946), а в 1930 г. Дж. Нортроп (Нобелевская премия, 1946) получил кристаллический пепсин. После этих работ стало ясно, что ферменты имеют белковую природу. В 1940 г. М. Куниц выделил кристаллическую РНК‑азу. К 1958 г. уже было известно более 100 кристаллических ферментов и свыше 500 ферментов, выделенных в некристаллическом виде. Получение высокоочищенных препаратов индивидуальных белков способствовало расшифровке их первичной структуры и макромолекулярной организации.

Большое значение для развития молекулярной биологии вообще и генетики человека, в особенности, имело открытие Л. Полингом (1940) ненормального гемоглобина S, выделенного из эритроцитов людей с тяжелой наследственной болезнью – серповидно‑клеточной анемией. В 1955–1957 гг. В. Ингрэм использовал разработанный Ф. Сенгером метод «отпечатков пальцев» (пятен, образуемых отдельными пептидами при хроматографии на бумаге) для анализа продуктов гидролиза гемоглобина S‑щелочью и трипсином. В 1961 г. Ингрэм сообщил, что гемоглобин S отличается от нормального гемоглобина только по природе одного аминокислотного остатка: в нормальном гемоглобине в седьмом положении цепи находится остаток глютаминовой кислоты, а в гемоглобине S – остаток валина. Тем самым полностью подтвердилось (1949) предположение Полинга, что серповидно‑клеточная анемия является болезнью молекулярной природы. Наследуемое изменение всего одного остатка аминокислоты в каждой половинке макромолекулы гемоглобина приводит к тому, что гемоглобин утрачивает способность легко растворяться при низкой концентрации кислорода и начинает кристаллизоваться, что приводит к нарушению структуры клетки. Эти исследования со всей очевидностью показали, что структура белка представляет собой строго определенную аминокислотную последовательность, которая закодирована в геноме. Об исключительном значении первичной структуры белка в формировании уникальной биологически активной конформации макромолекулы свидетельствовали работы К. Анфинсена (1951). Анфинсен показал, что утрачиваемая в результате Восстановления биологически активная макроструктура панкреатической рибонуклеазы предопределена аминокислотной последовательностью и может вновь возникать спонтанно при окислении SH‑групп остатков цистеина с образованием дисульфидных сшивок в строго определенных местах пептидной цепи фермента.

К настоящему времени детально изучен механизм действия большого числа ферментов и определена структура многих белков.

 

1

 

 

Из рентгеноструктурных исследований У. Астбери (1933) следовало, что пептидные цепи белковых молекул скручены или уложены каким‑то строго определенным образом. Начиная с этого времени, многие авторы высказывали различные гипотезы о способах укладки белковых цепей, но до 1951 г. все модели оставались умозрительными построениями, не отвечавшими экспериментальным данным. В 1951 г. Л. Полинг и Р. Кори опубликовали серию блестящих работ, в которых окончательно была сформулирована теория вторичной структуры белков – теория α‑спирали. Наряду с этим стало также известно, что белки обладают еще третичной структурой: α‑спираль пептидной цепи может быть определенным образом сложена, образуя довольно компактную структуру.

 

 

Для понимания принципов сборки биологических структур существенное значение имели вирусологические исследования (см. главу 25).

 

 

Нерешенные проблемы.

 

Основные успехи в современной молекулярной биологии достигнуты в основном в результате изучения нуклеиновых кислот. Тем не менее, даже в этой области еще далеко не все проблемы разрешены. Больших усилий потребует, в частности, расшифровка всей нуклеотидной последовательности генома. Эта проблема в свою очередь неразрывно связана с проблемой гетерогенности ДНК и требует разработки новых совершенных методов фракционирования и выделения индивидуальных молекул из суммарного генетического материала клетки.

До сих пор усилия в основном были сосредоточены на раздельном изучении белков и нуклеиновых кислот. В клетке же эти биополимеры неразрывно связаны друг с другом и функционируют главным образом в форме нуклеопротеидов. Поэтому сейчас с особой остротой проявилась необходимость изучения взаимодействия белков и нуклеиновых кислот. На первый план выдвигается проблема узнавания белками определенных участков нуклеиновых кислот. Уже наметились шаги к изучению такого взаимодействия этих биополимеров, без которого немыслимо полное понимание структуры и функций хромосом, рибосом и других структур. Без этого невозможно также уяснить регуляцию активности генов и окончательно расшифровать принципы работы белоксинтезирующих механизмов.

После работ Жакоба и Моно появились некоторые новые данные о регуляторном значении мембран в синтезе ядерного материала. Это ставит задачу более глубокого исследования роли мембран в регуляции репликации ДНК. В целом проблема регуляции активности генов и клеточной активности вообще стала одной из важнейших проблем современной молекулярной биологии.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: