Влияние высотных факторов и принципы формирования искусственной газовой среды в кабине

 

В круг задач экофизиологии входит также разработка различных систем, обеспечивающих стабильное поддержание заданных условий микроклимата в кабинах космических аппаратов. При этом важно определить границы допустимых колебаний таких параметров среды, как барометрическое давление, газовый состав, влажность и температура. Эти вопросы давно и успешно разрабатываются в тесной связи с прогрессом авиационной и ракетной техники.

Проблема рационального построения искусственной атмосферы в обитаемых космических кораблях привела к необходимости критической оценки некоторых фундаментальных вопросов биологии. Была поставлена прежде всего под вопрос целесообразность копирования в герметических кабинах основных параметров нормальной земной атмосферы (барометрическое давление 760 мм рт. ст.; О2 – 21 % и т. п.) (Е. Рот, 1968; О.Г. Газенко, А.М. Генин, В.Б. Малкин, 1968; и др.).

 

222

 

Большая практическая значимость для космической биологии и медицины проблемы гипоксии (кислородного голодания) являлась причиной углубленного изучения различной тяжести гипоксических состояний, возникающих в результате повреждающего воздействия экстремальных факторов среды – высоты, ускорения, повышенной температуры и др. В результате удалось разработать ряд рекомендаций по профилактике развития гипоксического состояния и для его своевременного обнаружения. Были предложены также мероприятия и средства, способствующие повышению устойчивости человека к кислородной недостаточности.

 

 

Влияние ионизирующего излучения.

 

Опасность поражающего действия космической радиации составляет, пожалуй, одну из главных трудностей на пути освоения мирового пространства.

Проблема обеспечения радиационной безопасности космических полетов прежде всего требует достаточно точной физической индикации предстоящих трасс полета. Действие различных видов космической радиации хорошо изучено на животных в лабораторных условиях, что облегчает оценку и интерпретацию данных физических исследований, а во многих случаях, по‑видимому, освобождает от проведения биологической индикации планируемых полетов. Следует, однако, заметить, что в радиологическом отношении космическое пространство неоднородно; интенсивность радиации может сильно изменяться во времени и пространство, особенно в период солнечных вспышек.

Первые попытки оценить радиационную обстановку в космосе сделали в 1934 г. Н.К. Кольцов, Г. Мёллер, Г.А. Надсон и другие при подъемах животных на воздушных шарах в верхние слои атмосферы. Однако к систематическому изучению этой проблемы удалось приступить лишь в 1957 г., когда было положено начало биологическим экспериментам на искусственных спутниках Земли.

Повреждающее действие ионизирующих излучений на генетический аппарат определило необходимость проведения генетических исследований организмов, запускаемых на большие высоты. В СССР они проводились начиная с 1960 г. весьма интенсивно и на большом числе биологических объектов (различные виды растений, микроорганизмов, насекомых, а также позвоночных; при этом использовались как интактные животные, так и культуры тканей). Исследования Н.П. Дубинина с сотрудниками (1960–1968; лауреат Ленинской премии, 1966) показали, что условия космического полета могут вызвать относительно небольшие наследственные изменения у отдельных организмов, оказать влияние на их развитие и размножение (насекомые, лучистые грибки, семена и проростки некоторых растений). Пока не представляется возможным точно связать эти изменения с космической радиацией или с каким‑либо другим определенным фактором полета. Оказалось, что сходные результаты можно получить, действуя на подопытные объекты перегрузками или вибрациями, так что существует мнение, что наследственные изменения, по‑видимому, возникают в результате комплексного воздействия различных факторов полета (Г.П. Парфенов, Я.Л. Глембоцкий, 1962).

Ряд важных проблем, касающихся относительной биологической эффективности отдельных компонентов космического излучения, средств профилактики и защиты от проникающей радиации, составляет предмет изучения космической радиобиологии.

Специального внимания требует изучение биологического действия тяжелых частиц – ядер с высоким атомным весом, обладающих исключительно большой энергией. Это единственный вид ионизирующего излучения, который до сих пор не воспроизведен в лабораторных условиях. На основании некоторых теоретических соображений и физических экспериментов (в частности, экспонирования на космических ракетах специальных индикаторов и моделей) показано, что, несмотря на практическое отсутствие средств защиты от этого вида космической радиации, вероятность его повреждающего действия относительно невелика. Это обусловлено двумя причинами: небольшой величиной (1 %), которая приходится на этот вид радиации, и тем, что ее действие приводит к тотальному разрушению относительно небольшое число клеток организма. Последнее обстоятельство выявило необходимость сравнительной оценки роли различных клеточных образований центральной нервной системы, проводящей системы сердца и других для жизнедеятельности организма.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: