Математические модели, основанные на использовании представлений физики и химии

 

При рассмотрении разнообразных биологических вопросов, относящихся прежде всего к биофизике, биохимии и молекулярной биологии, возникают математические задачи, часто совпадающие с задачами теоретической физики или химии, либо весьма близкие к ним. Естественно, что модели, используемые при решении задач такого рода, наиболее строги и бесспорны, поскольку и основные понятия, необходимые при построении таких моделей, и соответствующий математический аппарат обычно достаточно хорошо апробированы на аналогичных физических задачах.

Одной из первых, в которой была построена математическая модель биологического явления, можно, считать упоминавшуюся выше работу Л. Эйлера (1730). В этой работе сердце рассматривается как насос, а кровеносная система – как система упругих трубок. В дальнейшем в работах по гемодинамике было дано объяснение многих явлений (например, пульсовой волны), хотя вследствие больших математических трудностей ряд вопросов функционирования системы кровообращения до сих пор не описан математически. Принципы механики были использованы в трудах О. Фишера (1895) по кинематике суставов, в работах по применению учения о сопротивлении материалов для объяснения структуры костной ткани, по изучению движений животных в различных средах, а также в исследованиях по физиологической акустике. Важные работы по математической биофизике были выполнены группой Н. Рашевского, которая работает в Чикагском университете (США) с 1934 г.

В пробуждении интереса к проблемам молекулярной биологии заметную роль сыграла книга Э. Шредингера (Нобелевская премия, 1933) «Что такое жизнь с точки зрения физики?» (1945). Значительная часть математических работ в области молекулярной биологии базируется на статической физике и термодинамике. Так, в книге Ф. Джонсона, Г. Эйринга и М. Полиссара «Кинетические основы молекулярной биологии» (1954) с этой точки зрения рассматривается перенос веществ через биологические мембраны, зависимость биолюминесценции от температуры, процесс мышечного сокращения и т. д. В книге М.В. Волькенштейна «Молекулы и жизнь» (1965) приведен обзор современных работ (в том числе математических моделей матричной редупликации ДНК, мышечного сокращения), основанных на теоретической физике.

В литературе обсуждается необходимость объяснения ряда биологических процессов на основе квантовой механики. Речь идет в первую очередь о процессах фотосинтеза, фотохимических процессах зрения, биолюминесценции и процессах ферментативного катализа.

Представления термодинамики используются не только при изучении биологических процессов, происходящих на атомно‑молекулярном уровне; они находят применение и при изучении физиологических процессов, например, при исследовании терморегуляции. В развитии этого направления особое место занимает работа Э.С. Бауэра (1935).

Среди работ физико‑математического направления выделяются исследования по электробиологии, в особенности касающиеся возникновения возбуждения в рецепторах и распространения нервного импульса. Изучением физико‑математических аспектов процесса возбуждения занимался П.П. Лазарев. В работе «Ионная теория возбуждения» (1923) он рассматривал принципиальные вопросы построения математической биологии и выделил круг явлений, который успешно описывается при помощи физико‑химических моделей (биомеханика, физиологическая оптика и т. д.). При этом он выражал уверенность, что в дальнейшем удастся создать модели и таких явлений, как рост, размножение и др.

Более 100 лет назад было установлено, что распространение возбуждения по нервным волокнам связано с возникновением электрического тока. Л. Герман в 1868 г. выдвинул теорию электрического распространения возбуждения, согласно которой возбужденный участок нервного волокна генерирует ток, который, действуя на соседний невозбужденный участок, делает его, в свою очередь, генератором тока. Как было показано в дальнейших исследованиях, роль генератора играет поверхностная структура нервного волокна – его мембрана (см. главу 11).

В 1952 г. А.Л. Ходжкин и Э.Ф. Хаксли предложили математическую модель для описания поведения мембраны нервного волокна и процесса распространения импульса (Нобелевская премия, 1963). В этой модели свойства мембранного генератора, определяющиеся проницаемостью мембраны для разных ионов, описываются системой линейных дифференциальных уравнений первого порядка. При описании процесса распространения нервного импульса они исходят из того, что по своей электрической структуре нервное волокно подобно кабелю; распространение моделируется мембранными уравнениями и кабельным уравнением. Таким образом, задача сводится к решению системы дифференциальных уравнений, одно из которых – нелинейное уравнение в частных производных. Детальное исследование этой модели удалось выполнить только в последние годы благодаря применению вычислительных машин.

 

 

Сравнение теоретически вычисленных по уравнениям Ходжкина‑Хаксли, (а, б) и полученных экспериментально (в, г) распространяющихся потенциалов действия в аксоне кальмара (по Ходжкину и Хаксли, 1952).

Вычисленная скорость – 18,8 м/сек; скорость в эксперименте – 21,2 м/сек.

 

Другое направление в изучении распространения возбуждения ведет свое начало от работы Н. Винера и А. Розенблюта (1946, русский перевод 1961). В ней рассмотрено распространение активности в некоторой идеальной возбудимой среде, свойства которой заданы аксиоматически. Авторы делают попытку выяснить условия возникновения в такой среде аномальных режимов, аналогичных фибрилляции сердца или эпилептическим разрядам в нейронной сети. Анализ идеальной возбудимой среды (с учетом возможности спонтанной активности ее точек) позволил И.М. Гельфанду и М.Л. Цетлину (1960) показать возможность существования в таких средах свойства, аналогичного памяти, а также объяснить некоторые особенности работы синусного узла сердца. В последнее время получили новое развитие работы по моделированию сердечных фибрилляций и по изучению распространения возбуждения в идеальных средах, свойства которых приближаются к свойствам реальных объектов, в частности, в разветвленных волокнах и синцитиях (Ю.И. Аршавский и др., 1966; М.Б. Беркинблит и др., 1966; Г. Моу, 1967; В.И. Кринский, 1968).

Концепции и представления теоретической химии, широко используемые в биологии для построения различных математических моделей, основаны главным образом на феноменологическом подходе, выдвинутом в 1945 г. английским химиком К.Н. Хиншельвудом (Нобелевская премия, 1956). Хиншельвуд предложил использовать для описания кинетики химических реакций, протекающих в клетке, систему нелинейных дифференциальных уравнений. К сожалению, при реализации такого подхода обычно не хватает биохимических данных о конкретных реакциях, идущих в интактной клетке. Тем не менее на этом пути уже достигнуты определенные успехи. Так была, например, построена модель разложения глюкозы на СО2 и Н2О. Для описания этой реакции с достаточно полным использованием биохимических данных потребовалось исследовать систему из 21 дифференциального уравнения. В результате анализа были получены графики зависимости концентрации разных компонентов от времени. Проведенный анализ позволил оценить правильность существующих представлений о ходе этой реакции (А. Парди, 1962).

При исследовании системы нескольких десятков дифференциальных уравнений вычислительные машины становятся незаменимыми. Если же рассматривать не изолированную реакцию, а систему реакций, в результате которых в клетке синтезируются сотни веществ, влияющий друг на друга, то получается очень сложная многоконтурная система с множеством обратных связей. Для описания такой системы требуются тысячи уравнений. Несмотря на указанные трудности, подход, предложенный Хиншельвудом, продолжает развиваться, что, в частности, позволило показать возможность возникновения колебательных режимов для химических реакций и выяснить условия возникновения таких режимов[243]. Колебательные процессы в организме представляют большой интерес в связи с проблемой «биологических часов». Этой проблеме в последнее время посвящено большое количество работ, во многих из которых содержатся математические модели[244].

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: