Для трансформаторного масла

Электроды острие–плоскость; расстояние

между электродами 20 см; положительная полярность напряжения

 

Можно выделить  две области, связанные со временем воздействия напряжения (рис. 1.13), появление которых объясняется различными механизмами пробоя. При воздействии импульсов напряжения с длительностью τ < 10–4 с (рис. 1.13, область I) влияние примесей значительно ослаблено, т. е. они не успевают переместиться на заметные расстояния. Начальная стадия разряда в жидкости возникает при напряженностях 100 кВ/см. В этом случае начинают проявляться процессы электронной эмиссии. Возможны процессы авто- и термоэлектронной эмиссии с катода, а также процессы автоионизации жидкости у анода. Все перечисленные явления могут участвовать в инициировании разряда.

Образование газовых пузырьков у электрода может иметь место как за счет разложения углеводородов жидкого диэлектрика, так и за счет вскипания жидкости под воздействием выделенной энергии в локальных зонах электрода (тепловая теория пробоя). В газовых пузырьках развивается ударная ионизация, образуется кистевой стримерный канал, который развивается к противоположному электроду.

Резкое увеличение электрической прочности при τ < 10–5 с связано с запаздыванием развития разряда, когда время воздействия напряжения становится соизмеримо с временем формирования разряда. Увеличение времени воздействия напряжения τ < 10–3 с приводит к быстрому снижению U пр вследствие влияния влаги и волокон, а также образования газовых пузырьков. При дальнейшем увеличении времени воздействия напряжения решающее влияние на снижение U пр начинают оказывать тепловые процессы.

При длительном воздействии напряжения (см. рис. 1.13, область II)

присутствие влаги, газа, загрязнений в жидком диэлектрике сильно снижает его электрическую прочность, причем наиболее опасным является эмульгированное стояние влаги. Пробой наступает вследствие образования цепочек из мелких поляризованных частиц включений, которые вытягиваются вдоль силовых линий. Эти цепочки образуют проводящий канал, по которому протекает ток, разогревающий воду и прилегающую к каналу жидкость до кипения. Пробой жидкости происходит по образовавшемуся газовому каналу.

 

 

Рис. 1.14. Зависимость пробивного напряжения от расстояния между

электродами и полярности для трансформаторного масла (электроды острие–плоскость; напряжение постоянное): 1 – положительная полярность острия;2 – отрицательная полярность острия

 

Как следует из рис. 1.14, пробивное напряжение зависит от полярности электрода-острия при несимметричной системе электродов. Наиболее ярко эта зависимость проявляется для полярных жидкостей. Например, для воды U пр  при отрицательной полярности острия увеличивается в 2,0–2,5 раза по сравнению с положительной полярностью.

Для повышения электрической прочности масляной изоляции широко применяются барьеры из твердого изоляционного материала, устанавливаемые в масле между электродами.

Маслобарьерная изоляция широко применяется в высоковольтной технике при изготовлении трансформаторов, вводов, реакторов и т. п

При наличии барьеров электрическая прочность разрядного промежутка значительно возрастает. Это обусловливается двумя факторами. Барьер непроницаем для ионов жидкости. Поэтому ионы, двигаясь от одного электрода к другому, оседают на барьере, «растекаются» по его поверхности и заряжают ее. Благодаря этому электрическое поле в промежутке становится более равномерным, что приводит к увеличению разрядного напряжения. Кроме этого, барьер затрудняет образование сплошных проводящих мостиков из волокнистых веществ, находящихся в масле. Действие барьеров более эффективно в неравномерных полях. При кратковременных импульсных воздействиях напряжения барьеры менее эффективны, чем на постоянном и переменном напряжениях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: