Усилители могут работать в режимах А, АВ, В, С и D

В режиме А выходной ток усилительный прибор (транзистора или радиоэлектронная лампа) открыт в течении всего периода усиливаемого сигнала (т.е. постоянно) и через него протекает выходной ток. Усилители мощности класса А вносят минимальные искажения в усиливаемый сигнал, но имеют очень низкий КПД.

В режиме В выходной ток делится на две части, один усилительный прибор усиливает положительную полуволну сигнала, второй отрицательную. Как следствие более высокий КПД, чем в режиме А, но и большие нелинейные искажения, возникающие в момент переключения транзисторов.

Режим АВ повторяет режим В, но в момент перехода с одной полуволны на другую открыты оба транзистора, что позволяет снизить искажения при сохрани высокого КПД. Режим АВ является наиболее распространенным для аналоговых усилителей.

Режим С применяют в тех случаях, когда искажение формы сигнала при усилении не имеет, т.к. выходной ток усилительного прибора протекает меньше чем половина периода, что конечно же ведет к большим искажениям.

В режиме D используется преобразование входных сигналов в импульсы, усиление этих импульсов, а затем обратное преобразование. При этом выходные транзисторы работают в ключевом режиме (транзистор полностью закрыт или полностью открыт), что приближает КПД усилителя к 100% (в режиме АВ КПД не превышает 50%). Усилители, работающие в режиме D, называют цифровыми усилителями.

В двухтактной схеме усиление (режим В и АВ) происходит за два такта. В течение первого полупериода входной сигнал усиливается одним транзистором, а другой в течение этого полупериода или его части закрыт. При втором полупериоде сигнал усиливается вторым транзистором, а первый при этом закрыт.

Двухтактная схема усилителя на транзисторах показана на рисунке 8. Каскад на транзисторе VT3 обеспечивает двухтактный режим работы выходных транзисторов VT1 и VT2. Резисторы R1 и R2 задают режим работы транзисторов по постоянному току.

При приходе отрицательной полуволны Uвх ток коллектора VT3 увеличивается, что приводит к увеличению напряжения на базах транзисторов VT1 и VT2. При этом VT2 закрывается, а через VT1 протекает ток коллектора по цепи: +Uп, переход К-Э VT1, С2 (при этом заряжается), Rн, корпус.

При приходе положительной полуволны Uвх VT3 подзакрывается, что приводит к уменьшению напряжения на базах транзисторов VT1 и VT2 – VT1 закрывается, а через VT2 протекает ток коллектора по цепи: +С2, переход Э-К VT2, корпус, Rн, -С2. Таким образом, обеспечивается протекание тока обоих полуволн входного напряжения через нагрузку.

Рисунок 8 – Схема двухтактного усилителя мощности

 

В режиме D работают усилители с широтно-импульсной модуляцией (ШИМ). Входной сигнал модулирует прямоугольные импульсы, изменяя их длительность. При этом сигнал преобразуется в импульсы прямоугольной формы одинаковой амплитуды, длительность которых пропорциональна значению сигнала в каждый момент времени.

Последовательность импульсов поступает на транзистор (транзисторы) для усиления. Т.к. усиливаемый сигнал импульсный, транзистор работает в ключевом режиме. Работа в ключевом режиме связана с минимальными потерями, т.к. транзистор либо закрыт, либо полностью открыт (обладает минимальным сопротивлением). После усиления из сигнала извлекается низкочастотная составляющая (усиленный исходный сигнал) с помощью фильтра нижних частот (ФНЧ) и подается на нагрузку.

 

 

 

 

Рисунок 9 – Структурная схема усилителя класса D

 

Усилители класса D применяются в аудиосистемах портативных компьютеров, мобильные средства связи, устройствах управления двигателями и д.р.

Для современных усилителей характерно широкое использование интегральных схем.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: