Использование легких сплавов

Благодаря малой плотности, хорошим литейным свойствам и обрабатываемости при производстве различных деталей автомобиля широко применяются алюминиевые сплавы. Первыми деталями, которые начали изготавливать из алюминия, были поршни и головки блоков цилиндров двигателей внутреннего сгорания. При этом использовалась также хорошая теплопроводность алюминия. В дальнейшем из него начали делать различные корпуса, бачки, емкости, для достижения необходимой прочности которых не требовалось большой толщины стенок и, наоборот, при литье под давлением эти стенки делались тоньше.

У отливок, полученных методом литья под давлением в стальные формы, достигается высокая точность, что значительно уменьшает число обрабатывающих операций, ограничивая их лишь обработкой посадочных поверхностей. Отливки, полученные под давлением, все шире используются и для картеров двигателей внутреннего сгорания. Это требует специальной оснастки и приспособлений для формирования в отливке рубашки охлаждающей жидкости, однако большая экономия массы окупает все затраты.

Уменьшение массы при использовании алюминия вместо чугуна почти пропорционально соотношению плотностей этих материалов, равному 7,3:2,7. Литая деталь из алюминиевого сплава почти втрое легче такой же детали из чугуна. Сравнительные исследования стоимости чугунного и алюминиевого блоков цилиндров для бензинового двигателя объемом 1800 – 2200 см3, проведенные в последние годы, показали преимущества использования алюминия. Сравнение проводилось по всему производственному циклу: от изготовления стержней, расплава, литья и до окончательной механической обработки. Масса необработанной отливки составляет 72 кг при использовании чугуна и 23 кг – алюминия. Обработанный чугунный блок весит 44,5 кг, алюминиевый – 14,4 кг.

 
Рис. 5 Прототип алюминиевого кузова Audi 1985 года

Проводилось также сравнение энергии, потребляемой на все операции литья и обработки. Для выпуска в день 3000 шт. блоков из чугуна необходимо 6500 кВт, а для того же числа блоков из алюминия – 1100 кВт.

Исследование показывает, что с точки зрения энергетических затрат в случае изготовления алюминиевого блока экономия энергии составляет 60% по сравнению с чугунным [6]. Поэтому, несмотря на более высокую цену алюминия, его применение для блока цилиндров, а также других отливок является выгодным. Влияние уменьшения массы проявится далее при эксплуатации в меньшем расходе топлива.

Приведем другие примеры снижения массы при замене серого чугуна алюминием. У рядного четырехцилиндрового двигателя «Шевроле Вега» (США) с рабочим объемом 2300 см3 чугунный блок имеет массу 39,5 кг, а такой же блок из алюминия – 13,6 кг, т. е. снижение массы достигает 65%. У шестицилиндрового двигателя «Рамблер-Кастом» фирмы «Америкэн Моторс» блок из алюминия с залитыми чугунными гильзами имеет массу 30 кг; масса этого же блока из чугуна составляет 76 кг. Снижение массы в этом случае достигает 61%.

Аналогичные цифры характерны и для цилиндров небольших двигателей с воздушным охлаждением, где снижение массы также достигает 60%. Чугунный цилиндр с оребрением двухтактного двигателя объемом 250 см3 имеет массу 8,15 кг, а такой же алюминиевый цилиндр с твердым хромированным покрытием рабочей поверхности – 3,15 кг, что соответствует уменьшению массы на 62 %. Тот же алюминиевый цилиндр, но с запрессованной чугунной гильзой весит 3,44 кг, что соответствует снижению массы на 58%.

Алюминиевые блоки цилиндров двигателей дают не только уменьшение массы, но и улучшение теплового режима. Теплопередача и отвод теплоты в систему охлаждения улучшаются, температурные поля головки блока и цилиндров становятся более равномерными, что не менее важно, чем снижение массы. Прежде всего уменьшается местный перегрев вблизи выпускного клапана, а распределение температуры по поверхности цилиндра становится более равномерным.

Цилиндр сохраняет свою форму и в нагретом состоянии, что важно для прилегания поршневых колец по всей окружности и, в свою очередь, имеет влияние на проникание масла в камеру сгорания. При обычном сегодня применении алюминиевых поршней большее тепловое расширение алюминиевых цилиндров выгодно тем, что зазор между цилиндром и поршнем может быть уменьшен, что снижает уровень шума двигателя.

«Сколько же массы может сэкономить переход на алюминий в автомобиле среднего класса? По оценкам, вместо усредненных 1229 кг можно выйти на 785, то есть выигрыш составит около 36%. В пересчете на топливо это пара-тройка литров на сотню километров пробега.

Рис. 6 Кузов Audi TT Coupé лишь на 31% состоит из стали, остальное алюминий

А нельзя ли пойти дальше и заменить алюминий магнием с плотностью всего 1,81 г/см3? В свое время в Volkswagen Lupo 3L уже была магниевая крышка багажника и титановые пружины подвески. Проблема тут не столько в стоимости металла, а в его «жадности» до кислорода. Например, магниевые колесные диски тщательно покрывают лаком, иначе они быстро превратятся в порошок окиси. (Похожие проблемы были и с алюминием, пока российские металлурги не придумали специальные коррозионностойкие сплавы, которыми успешно пользуется мировой автопром.) Поэтому магний пока применяют для деталей, где опасность окисления минимальна. Например, для каркаса торпедо Mini и Rolls-Royce. Последняя весит всего 7,6 кг и отливается единым «куском». А вот на BMW применили магний в блоке цилиндров. Новая рядная «шестерка» на четверть легче благодаря схеме «два в одном»: алюминиевая внутренняя часть с гильзами и постелями коренных подшипников окружена магниевым корпусом с водяной рубашкой и каналами для смазки. Здесь алюминий сопротивляется высоким термическим и механическим нагрузкам, а магний облегчает самую объемную часть мотора. Навесные агрегаты крепятся к магниевому корпусу алюминиевыми болтами. Правда, не граммов ради, а лишь из-за коррозионной проблемы на стыке магния и стали.» [7]

Высокопрочная сталь

«30 известных металлургических фирм объединились в консорциум и разрабатывают проект ULSAC (Ultra Light Steel Auto). Например, применение высокопрочных стальных сплавов и технологии гидроформования полых профилей позволило снизить вес дверей и капотов 18 моделей образца 1997 года на 27—32%, при этом стоимость изготовления сохранилась на прежнем уровне. А совсем недавно была продемонстрирована сверхлегкая дверь, весящая (без стекла и внутренних механизмов) всего… 10,47 кг, что на целых 42% легче традиционной конструкции! При той же прочности.

А колеса? Что же здесь можно противопоставить красивым, легким и прочным легкосплавным дискам? Оказывается, новые марки стали DP600 и DR600 позволяют уменьшить вес штампованного диска на 20%, так что теперь обод размера 6SJ x 15 весит всего 6,75 кг при сохранившейся стоимости, что лишь на 1250 граммов тяжелее более дорогого алюминиевого конкурента. Испытывают и биметаллический стальной диск, сваренный лазером из полос двух различных сортов стали по технологии Tailored Strip, который весит всего 5,3 кг, то есть легче алюминиевого.

Более того, современные автомобилестроители того и гляди вернутся к стальным бензобакам! Оказывается, пластиковые пропускают сквозь стенки около 18 граммов паров бензина в сутки, тогда как калифорнийские законодатели требуют не более 0,5 грамма! Тут и вспомнили о старом добром стальном баке, не пропускающем вообще ничего. Только вместо вредного свинца с коррозией теперь будет использоваться покрытие из цинка и никеля с тончайшей пластиковой оболочкой. Есть варианты и горячего алюминирования (к ним склоняются в Германии и Японии), и даже использования нержавейки.» [8]


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: