Экзаменационный билет № 10

1.Составьте алгоритм по использованию природных ресурсов и охраны окружающей среды от вредных выбросов мартеновского производства.

 

Из всех пылегазовых выбросов из сталеплавильных агрегатов наибольшее количество приходится на мартеновские печи: 90 % оксидов серы, 85 % оксидов азота и 75 % пыли. На одну тонну садки в мартеновских печах при отоплении их природным газом образуется от 1000 до 4000 м3/ч газа, имеющего на выходе из печи температуру 700— 800 °С. Химический состав газа зависит от вида применяемого топлива, состава шихты и технологии плавки. В нем содержатся оксид и диоксид углерода, оксиды азота и серы, кислород, водород, азот, водяной пар и некоторые другие Вещества. Количество оксидов серы зависит от вида применяемого топлива и при отоплении коксодоменным газом может достигать 800 мг/м3.

Кроме газообразных примесей, отходящий газ содержит значительные количества пыли — до 15 г/м3. Мартеновская пыль состоит в основном из оксидов железа (около 88 %). Кроме того, в ней содержатся оксиды алюминия, марганца и других веществ, входящих в состав шихты; оксиды железа придают газу коричневую окраску.

В мартеновских цехах имеются, и неорганизованные источники поступления пыли в окружающую среду. Например, в воздухе миксерного отделения содержание пыли доходит до 13 г/м3 в месте разгрузки сыпучих материалов в шихтовом дворе 250—450 мг/м3 в люнкеритной установке в разливочном пролете 100—160 мг/м3. Отводимый от мартеновской печи газ, перед выбросом в атмосферу подвергается обязательной очистке. Перед очисткой газ охлаждают в котлах - утилизаторах до 220—250 °С.

 

2.Выбрать мероприятия по очистке загрязненных территорий от деятельности мартеновского производства.

 

Наибольшее распространение получили две схемы очистки мартеновского газа: сухая в электрофильтрах и мокрая. Запыленность очищенных по этим схемам газов не превышает 100 мг/м3. Для предотвращения взрыва оксид углерода, содержащийся в газе, дожигается в специальной камере, расположенной перед котлом-утилизатором.

При очистке газа, отходящего от двухванного сталеплавильного агрегата, применяются также сухая и мокрая схемы очистки.

В схеме очистки мартеновского газа сухие пластинчатые электрофильры установлены после котла – утилизатора. После дожигания оксида углерода газ охлаждается в скруббере (до 200 °С), за которым установлен злектрофильтр типа УГ. При такой схеме очистки, если запыленность газа перед скруббером составляла до 7 г/м3, то перед электрофильтром она уже снижалась до 3 г/м3, а за ним — до 0,1 г/м3.

При мокрой очистке газа, отходящего от двухванного сталеплавильного агрегата, в скрубберах Вентури его сначала охлаждают до 700— 800 °С путем опрыскивания воды, затем направляют в котел -утилизатор. Охлажденные до 200—250 °С газы поступают далее в скрубберы Вентури, после них — в каплеуловители, а оттуда с помощью дымососов — в дымовую трубу. Эффективность улавливания пыли достигает 99 %.

В настоящее время необходимо очищать мартеновские газы не только от пыли, но и от оксидов азота. Для удаления их апробирован аммиачно-каталитический метод. Подготовка газов к каталитической очистке включает их охлаждение и очистку от пыли в тканевых или электрических фильтрах. Процесс восстановления оксидов азота аммиаком до элементарного азота происходит пре температуре 280—320°С в присутствии ванадиевого катализатора. Разрабатываются методы окисления оксидов азота до диоксидов, для чего используются твердые, жидкие и газообразные окислители (гидрохлорид натрия, хлорная известь, диоксид хлора, озон) Получаемый диоксид азота и непрореагировавший оксид азота улавливают щелочным раствором.

Исследуются методы адсорбции оксидов азота твердыми адсорбентами (сланцевой золой, известью, цеолитами и другими веществами) в неподвижном и кипящем слоях. При этом поглощается до 80 % оксидов азота. Контактный аппарат представляет собой цилиндрическую или прямоугольную емкость с перегородкой — перфорированной полкой, на которой размещают адсорбент. При необходимости в аппарате устанавливают несколько полок с адсорбентом, слой которого достигает в высоту 50—100 мм, устраивают отдельный коллекторный подвод и отвод газа от каждой полки.

Для сухой очистки мартеновского газа от пыли после котлов-утилизаторов устанавливают сухие пластинчатые четырехпольные электрофильтры.

Если в схеме отвода мартеновского газа котел-утилизатор не работает, перед очисткой газа в электрофильтре его охлаждают и увлажняют в полом испарительном скруббере.

Для безопасности ведения процесса очистки газа в электрофильтре окись углерода, содержащуюся в мартеновском газе, дожигают в специальной камере перед котлом-утилизатором. При содержании СО в газе более 1 % (объемн.) подачу напряжения на электрофильтр прекращают.

Уловленную в сухом электрофильтре пыль рекомендуют удалять в сухом виде системами пневмотранспорта или механическим способом в специальный пылевой бункер с последующим окомкованием и использованием в агломерационном, доменном или сталеплавильном производствах.

 

3.Охарактеризуйте методы микроскопии.

Микроскопия (лат. μΙκροσ — мелкий, маленький и σκοποσ — вижу) — изучение объектов с использованием микроскопа. Подразделяется на несколько видов: оптическая микроскопия, электронная микроскопия, рентгеновская или рентгеновская лазерная микроскопия, отличающиеся использованием электромагнитных лучей с возможностью рассмотрения и получения изображений микроэлементов вещества в зависимости от разрешающей способности приборов (микроскопов).

Оптическая микроскопия. Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешения составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопов определяют форму, размеры, строение и многие другие характеристики микрообъектов.

Оптический, или световой микроскоп использует видимый свет, проходящий через прозрачные объекты, или отражённый от непрозрачных. Оптическая система из нескольких линз позволяет получить кажущееся увеличенное изображение образца. Полученное изображение можно наблюдать глазом (или обеими глазами, в бинокуляре), либо фотографировать, передавать на видеокамеру для оцифровки. В состав современного микроскопа обычно входит система подсветки, столик для перемещения объекта (препарата), наборы специальных объективов и окуляров.

Были разработаны виды микроскопов, позволяющие существенно расширить возможности обычной оптической микроскопии:

1. Люминесцентный микроскоп

2. Поляризационный микроскоп

3. Металлографический микроскоп

До 1950-х годов работали преимущественно в диапазоне видимого спектра света. Глаз работает в оптическом диапазоне длин волн. Оптические микроскопы не могли давать разрешающей способности менее полупериода волны опорного излучения (для видимого диапазона длина волн 0,2—0,7 мкм, или 200—700 нм). Предельное увеличение оптического микроскопа — до 2000 раз. Дальнейшее увеличение изображения нецелесообразно, так как не позволяло обнаружить дополнительных деталей структуры вешества. Отдельные частички размером приблизительно до 0,15 мкм хорошо видны при увеличении в 2000 раз. Более мелкие частицы не отражают световые лучи и не видны под микроскопом.

Электронная микроскопия - совокупность электронно-зондовых методов исследования микроструктуры твердых тел, их локального состава и микрополей (электрических, магнитных и др.) с помощью электронных микроскопов - приборов, в которых для получения увеличения изображений используют электронный пучок. Электронная микроскопия включает также методики подготовки изучаемых объектов, обработки и анализа результирующей информации. Различают два главных направления электронной микроскопии: трансмиссионную (просвечивающую) и растровую (сканирующую), основанных на использовании соответствующих типов. Они дают качественно различную информацию об объекте исследования и часто применяются совместно. Известны также отражательная, эмиссионная, оже-электронная, лоренцова и иные виды электронной микроскопии, реализуемые, как правило, с помощью приставок к трансмиссионным и растровым электронным микроскопам.

Рентгеновская микроскопия — совокупность методов исследования микроскопического строения вещества с помощью рентгеновского излучения. В рентгеновской микроскопии используют специальные приборы — рентгеновские микроскопы. Разрешающая способность достигает 100 нм, что в 2 раза выше, чем у оптических микроскопов (200нм). Теоретически рентгеновская микроскопия позволяет достичь на 2 порядка лучшего разрешения, чем оптическая (поскольку длина волны рентгеновского излучения меньше на 2 порядка). Однако современный оптический микроскоп - наноскоп имеет разрешение до 3-10нм.

Рентгеновская микроскопия разделяется на:

· Отражательная микроскопия

· Проекционная микроскопия

· Электронная микроскопия

· Рентгеновская лазерная микроскопия

 4.Составьте алгоритм отбора проб влажных осадков (дождя и снега).

 

Пробы влажных осадков (дождя и снега) чрезвычайно чувствительны к загрязнениям, которые могут возникнуть в пробе при использовании недостаточно чистой посуды, попадании инородных (не атмосферного происхождения) частиц и др. Считается, что пробы влажных осадков не следует отбирать вблизи источников значительных загрязнений атмосферы — например, котельных или ТЭЦ, открытых складов материалов и удобрений, транспортных узлов и др. В подобных случаях проба осадков будет испытывать значительное влияние указанных локальных источников антропогенных загрязнений.

Образцы осадков собирают в специальные емкости, приготовленные из нейтральных материалов. Дождевая вода собирается при помощи воронки (диаметром не менее. 20 см) в мерный цилиндр (или непосредственно в ведро) и хранится в них до анализа.

Отбор проб снега обычно проводят, вырезая керны на всю глубину (до земли), причем делать это целесообразно в конце периода обильных снегопадов (в начале марта). Объем снега в переводе на воду можно также вычислить по вышеприведенной формуле, где D — диаметр керна.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: