Природа электрической активности мозга

Электроэнцефалография человека

 

Мозг человека - едва ли не самое большое таинство природы. В гигантских популяциях миллиардов нервных клеток, в еще большем (на три-четыре порядка) количестве нервных связей и в астрономическом числе эффективных межнейронных комбинаций саморазвивающаяся природа обратилась к самой себе в форме самопознания. Порождающиеся в ходе этого процесса субъективные образы и представления первичной реальности стали у человека доминирующими мотивами программирования и управления поведением, от элементарных актов типа забивания гвоздей и придумывания научных гипотез до сложных межличностных контактов и экзистенциальных размышлений.

Теперь все в природе стало подвластным анализу, даже сам мозг. Однако в последнем случае исследователи столкнулись с уникальной и казалось бы практически безвыходной ситуацией, когда в сети экспериментальных процедур следовало поймать реально существующие, но быстротечные и бестелесные психические феномены: эмоциональные состояния, процедуры мышления и ментальные образы! Какими же нужно обладать инструментами экспериментального анализа, чтобы зафиксировать хотя бы элементарные акты человеческой психики?

Можно было бы попробовать измерять потребление нервными клетками кислорода или питательных веществ (глюкозы), предполагая, что в состоянии активации то и другое требуется клеткам в большем количестве. Можно измерять теплопродукцию нервной ткани. И такие методы действительно существуют в настоящее время, например, в виде технологий позитронно-эмиссионной томографии, ядерно-магнитного резонанса, тепловидения и др. Однако, подобные подходы, очевидно, лишь косвенным образом могут отражать собственно информационную активность мозга. К тому же большая инерционность этих методов (секунды и десятки секунд) не позволяет им "отреагировать" на мимолетную по своей природе аналитическую деятельность нейронов.

К счастью для многих поколений психофизиологов в основе аналитических процедур нервных клеток оказался заложенным вполне материальный носитель - разность электрических потенциалов по обе стороны клеточной мембраны, достигающая 70-80 милливольт (мВ)! Распространяющиеся по отросткам нервных клеток кратковременные сдвиги мембранного потенциала или нервные импульсы можно было зарегистрировать с помощью обычных вольтметров, снабженных каскадом предварительного усиления электрического сигнала. Таким образом, динамика состояний нейронов могла передаваться на стрелки электрических регистраторов без малейшей задержки. Для исследований на человеке трудность этого экспериментального подхода заключалась только в том, что электрическую активность мозга нужно было зарегистрировать "неинвазивно", т.е. без каких-либо разрезов, проколов и др. повреждений биологических тканей. А как иначе, без повреждений, "отвести" потенциалы коры головного мозга, защищенной от внешних воздействий не только кожей и костями черепа, но дополнительно еще укрытой несколькими оболочками, между которыми циркулирует токопроводящая цереброспинальная жидкость? Как видно, природа сделала все, чтобы защитить мозг не только от механических повреждений, но и от внешних электромагнитных полей. Вот эту последнюю защиту одинаково трудно "пробить" как с внешней, так и с внутренней стороны черепной коробки. Корковые электрические потенциалы если и проникают на поверхность черепа, то они ослаблены в тысячи раз, в конечном итоге не превышая одной - двух сотен миллионных долей вольта. Это притом, что в сотни раз большие потенциалы наводятся на теле человека от внешних природных и техногенных электромагнитных полей.

электроэнцефалограмма сегментация электрическая активность

Тем не менее около 80 лет назад технология регистрации электрических потенциалов мозга непосредственно с кожной поверхности головы человека была продемонстрирована немецким психиатром Гансом Бергером. Этот метод получил название электроэнцефалографии (ЭЭГ), и в настоящее время ни одно неврологическое отделение в больницах, ни одна поликлиника соответствующего профиля не обходится без лаборатории электроэнцефалографии. Диагностике с помощью метода ЭЭГ теперь хорошо поддаются многочисленные очаговые поражения мозга, опухолевые процессы, эпилептические и некоторые другие нейрогенные заболевания.

Природа электрической активности мозга

 

 

Основными элементами центральной нервной системы (ЦНС) являются нейроны. Типичный нейрон состоит из трех частей: дендритное дерево, тело клетки (сома) и аксон (рис.1). Сильное разветвленное тело дендритного дерева имеет большую поверхность, чем остальные его части, и является его рецептивной воспринимающей областью. Многочисленные синапсы на теле дендритного дерева осуществляют прямой контакт между нейронами. Все части нейрона покрыты оболочкой - мембраной. В состоянии покоя внутренняя часть нейрона - протоплазма - имеет негативный знак по отношению к внеклеточному пространству и составляет приблизительно 70 мВ.

Этот потенциал называют потенциалом покоя. Он обусловлен разностью концентраций ионов Na+, преобладающих в экстраклеточной среде, и ионов К+ и Cl-, преобладающих в протоплазме нейрона. Если мембрана нейрона деполяризуется от - 70 мВ до - 40 мВ, при достижении некоторого порога нейрон отвечает коротким по длительности импульсом, при котором мембранный потенциал сдвигается до +20 мВ, а затем обратно до - 70 мВ. Этот ответ нейрона называют потенциалом действия. Длительность данного процесса составляет около 1мс.

Потенциал действия является основным механизмом, с помощью которого аксоны нейронов передают информацию на значительные расстояния.

В функциональном отношении нейроны делятся на три основных класса.

Чувствительные (сенсорные) или рецепторные нейроны несут информацию от периферии к центру в виде последовательности разрядов потенциалов действия, в которых кодируются физические и другие параметры стимула.

Интернейроны действуют на другие нейроны посредством постсинаптических возбуждающих или тормозных потенциалов. Это самая многочисленная группа, состоящая из 20 миллиардов нейронов ЦНС.

Двигательные (моторные) или эффекторные нейроны - это все нейроны, которые посылают эфферентные аксоны для активации мышц.

 

Глия. Более половины объема ЦНС состоит из глиальных клеток, которые поддерживают функцию нейронов, но непосредственно не участвуют в функционировании нейронов.

1.3 Регистрация электроэнцефалограммы по системе "10-20"

 

В настоящее время чаще всего используется расположение электродов по международной системе "10-20 %". Система "10-20 %" (рис.2) - стандартная система размещения электродов на поверхности головы, которая рекомендована Международной федерацией электроэнцефалографии и клинической нейрофизиологии, она была создана в 1950-х годах канадским нейрофизиологом Гербертом Генри Джаспером. Всего в этом случае на поверхность головы накладывают 21 электрод [2].

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: