Эволюция среды и жизнь

 

Изучение истории Земли и жизни позволяет видеть, что жизнь ‑ важнейший геологический фактор, что она издавна вносила и вносит коренные изменения в состав геологических образований, в состав среды, вследствие чего изменялась среда и изменялась сама жизнь.

Древнейшая бескислородная или бедная кислородом среда узнавалась нами по ее геологическим образованиям; она оставила свой след в виде отложений в осадках водных бассейнов закисных, недоокисленных соединений. Это способствовало накоплению в природе органического вещества вообще и особенно вещества отмерших организмов, в частности, в виде битумов жидких и газообразных, отчасти минерализованных, в виде шунгитов докембрия Карелии. Восстановительный характер сред докембрия виден и по присутствию в его составе пиритоносных слоев, свидетельствующих о сероводородных фациях.

Эпоха возникновения жизни приходится на границу с археем, когда водные бассейны уже образовались, когда углеродные соединения еще естественно синтезировались химическим путем при участии воды и внешних факторов и когда энергия геохимических реакций с выделением тепла могла стать основой оживления белковых микрокапель ‑ коацерватов, став энергией биохимических процессов.

Ареной зарождения жизни была восстановительная среда. В древнейшей атмосфере углекислоты содержалось, по‑видимому, в 100 000 раз больше, чем в наше время, причем около 40% ее запасов биологическим и в меньшей степени геохимическим путем было вовлечено в земную кору в виде твердых карбонатов кальция и магния, карбонатных железных и других руд. Древнейшие фотосинтезирующие организмы тоже извлекали огромные количества углекислоты из биосферы, высвобождая за счет воды большие запасы свободного кислорода. Таким образом, органическая жизнь изменила первичные восстановительные среды на окислительные, в условиях которых, естественно, углеродные соединения уже не могли создаваться, а могли лишь разрушаться. Поэтому возникновение организмов в дальнейшем уже не происходило.

Протерозой был временем проявления массовой жизнедеятельности водорослей и бактерий, в том числе железобактерий. Водные среды были сильно карбонатными из‑за обилия углекислоты в биосфере и мало солеными. Но к концу этой эры расход углекислоты уже недостаточно восполнялся ее выбросами при вулканических явлениях. Конечно, мы не располагаем количественной характеристикой компонентов, которые входили в протерозое в гидро‑ и атмосферу Земли. Но общий состав их, по‑видимому, разгадан исследователями правильно, что подтверждается как минеральными образованиями, так и организмами, остатки которых мы находим в отложениях протерозоя. Высокая растворимость углекислоты, поступавшей в биосферу при вулканических явлениях, способствовала быстрому захвату ее дождевыми и затем морскими водами. В морях ее приток должен был стимулировать развитие фотосинтезирующих организмов, одноклеточного фитопланктона и донных форм водорослей в мелководьях.

Изучение водорослей протерозоя, в основном синезеленых, показывает на огромный размах их развития. Извлечение углекислоты из среды, насыщенной бикарбонатами и нитратами кальция и магния, вело к интенсивному выделению карбонатов кальция непосредственно на тканях водорослей, поэтому ученые нередко наблюдают в прозрачных шлифах пород прекрасное сохранение их морфологии в ископаемом состоянии. Известь, садившаяся на пленки и колонии микроскопических водорослей, облекала их со всех сторон, что приводило за длительные промежутки времени к образованию известковых тел различной формы и размеров (строматолитов), которые указывают часто, какими были эти водоросли, и свидетельствуют об относительной устойчивости их жизнедеятельности. При этом, если водорослевые строматолиты не подвергались вместе с вмещающей породой существенным преобразованиям в процессе метаморфизма, в них можно обнаружить остаточные микроструктуры, которые обычно говорят о быстром ходе эволюции этой группы организмов. Подсчитывая продолжительность жизни и деятельности водорослей в постройках строматолитового типа, мы можем говорить о длительности жизни их видов, что дает цифры от сотен до нескольких тысяч, редко до двух‑трех десятков тысяч лет.

Все три первые эры существования Земли отличались от последовавших за ними высоким содержанием в биосфере углекислоты, запасы которой начали иссякать лишь к концу протерозоя в результате огромного размаха жизнедеятельности "морских" придонных водорослей и, несомненно, фитопланктона. Одновременно создавались запасы молекулярного кислорода. Моря, освобождаясь от высокого содержания в водах бикарбонатов, постепенно засолонялись. Таким образом, водная среда, как и атмосфера, постепенно, но неуклонно изменялась, влияя тем самым на развитие в биосфере живого вещества.

Из потребителей свободного кислорода около остатков водорослей можно отметить, как видно по остаточным микроструктурам, только железобактерии. Таким образом, наличие железистых пленок в строматолитах все же скорее говорит о бедности биосферы кислородом. По‑видимому, он жадно поглощался тогда при химическом окислении минеральных веществ на выступах суши. Во всяком случае несомненно, что появление запасов кислорода в биосфере еще не стимулировало заметно развитие животных. Вплоть до начала палеозоя они были представлены очень и очень бедно.

Вероятно, что к началу палеозоя сформировалась атмосфера почти современного состава. Возможно, что это и так, но основной фактор, который при этом проявил себя как планетарное явление,‑ это появление признаков повышенной солености некоторых бассейнов, приводившей к развитию лагун с садкой морских солей, и снижение магнезиальности вод. В протерозое таких явлений не отмечено. Начало палеозоя ознаменовалось значительным развитием красных водорослей, так называемой эпифитоновой флоры, и именно около мелких"зарослей" таких водорослей мы находим и остатки археопиат, килобитов и других беспозвоночных животных кембрия. Палеоэкологические наблюдения позволяют думать что стимулом для развития многих ранних трупп животных были условия


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: