ТЕМА Дифференциальные уравнения, в которых требуется разделить переменные

ПОВТОРЕНИЕ. Тема прошлого урока: Дифференциальные уравнения, в которых переменные уже разделены

Дифференциальные уравнения, в которых выражение, зависящее от y, входит только в левую часть, а выражение, зависящее от x - только в правую часть, это дифференциальные уравнения с разделенными переменными, в которых переменные уже разделены.

В левой части уравнения может находиться производная от игрека и в этом случае решением дифференциального уравнения будет функция игрек, выраженная через значение интеграла от правой части уравнения.

                        Пример такого уравнения     .

В левой части уравнения может быть и дифференциал функции от игрека и тогда для получения решения уравнения следует проинтегрировать обе части уравнения.      Пример такого уравнения      .

 

 

Пример 1. Найти общее решение дифференциального уравнения

Решение. Пример очень простой. Непосредственно находим функцию по её производной, интегрируя:

Таким образом, получили функцию - решение данного уравнения.

 

Пример 2. Найти общее решение дифференциального уравнения

Решение. Интегрируем обе части уравнения:

.

Оба интеграла - табличные. Идём к решению:

Функция - решение уравнения - получена. Как видим, нужно только уверенно знать табличные интегралы и неплохо расправляться с дробями и корнями.

 

 

ТЕМА Дифференциальные уравнения, в которых требуется разделить переменные

Дифференциальные уравнения с разделяющимися переменными, в которых требуется разделить переменные, имеют вид

.

В таком уравнении и - функции только переменной x, а и - функции только переменной y.

.

 

ПРИМЕР 2  Найти общее решение дифференциального уравнения

                                              .

                                                        Решение.

 Бывает, что забвение элементарной (школьной) математики мешает даже близко подойти к началу решения, задача выглядит абсолютно тупиковой. В нашем примере для начала всего-то нужно вспомнить свойства степеней.

Так как , то перепишем данное уравнение в виде

.

Это уже уравнение с разделяющимися переменными. Умножив его почленно на произведение , получаем

.

Почленно интегрируем:

Первый интеграл находим интегрированием по частям, а второй - табличный. Следовательно,

.

Логарифмируя обе части равенства, получаем общее решение уравнения:

.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: