Достоинства и недостатки

Применение данной кинематической схемы наглядно показало наличие преимуществ.

К положительным моментам можно отнести:

  • способность изменять направление передаваемого движения;
  • широкая область применения;
  • эффективно реализована передача, преобразование, увеличение мощности вращательного движения между осями передачи расположенными под углом друг к другу;
  • достаточно широкий диапазон задания углов передачи крутящего момента от ведущего элемента к ведомому;
  • широкая вариативность при компоновке разрабатываемых зубчатых и комбинированных систем;
  • высокие нагрузочные характеристики (данные устройства способны передавать мощность величиной до 5000 кВт);
  • эксплуатация и обслуживание не вызывает трудностей;
  • удаётся получить высокий КПД.

К недостаткам специалисты причисляют:

  • нагрузочная способность ниже, чем у цилиндрических конструкций (в среднем она на 20 процентов ниже);
  • невысокая несущая способность (этот показатель ниже на 15 процентов);
  • сложность и трудоёмкость в изготовлении колёс с заданными параметрами зубьев (количеством, величиной, углом наклона);
  • повышенные требования к точности нарезания зубьев;
  • возникновение повышенных осевых и изгибных нагрузок на все валы (особенно этот эффект наблюдается между валами, расположенными консольно);
  • необходимость регулировки процесса передачи вращения;
  • обладают большей массой, чем другие зубчатые передачи;
  • высокие затраты на производство и обслуживание;
  • возникают трудно разрешимые проблемы при проектировании и изготовлении систем с изменяемым передаточным числом;
  • повышенная общая жёсткость конструкции.

Применение механизма

Область применения подобных передач целесообразно рассматривать по трём наименованиям: скоростные, силовые, приборные. Все они получили широкое распространение в различных отраслях промышленности. Зубчатые колёса хорошо зарекомендовали себя при создании самых сложных кинематических схем.

Скоростные передачи предназначены для повышения скорости передаваемого вращения. Они успешно применяются в редукторах турбомашин, коробках перемены передач автомобилей (механических и автоматических).

От силовых передач требуется значительное повышение мощности передаваемого вращения. Они эксплуатируются в крановых установках, прокатных станах, тяговых механизмах различного назначения. Такие конструкции работают на малых скоростях. Благодаря этому удаётся передавать большие крутящие моменты. Главным требованием, которое предъявляют к элементам таких систем – плотный контакт между зубьями входящими в зацепление.

На практике распространение получил класс гипоидных агрегатов. Их устанавливают в механизмы и оборудование которые, используются в общем машиностроении. Например, грузовых и легковых автомобилях (в качестве элементов трансмиссии). Особое место такие системы занимают в вертолётостроении. Их применяют на летательных аппаратах практически всех конструкций. Этого удалось добиться благодаря применению зубчатых колёс оснащённых круговыми зубьями. Увеличением угла наклона зуба позволяет передаче работать более плавно. В этом случае удаётся избавиться от рывков и проскальзываний. Наиболее эффективным считается угол т равный 35°. Такие колеса обладают повышенной несущей способностью, надёжностью и долговечностью. Данные передачи работают плавно и практически бесшумно. Они надёжно выполняют свои функции, даже на высоких скоростях. Эта способность реализована благодаря многопарному зацеплению. Такой механизм позволяет снизить динамические нагрузки и предотвратить проскальзывание. Конструкции подобного вида активно применяются в приводе несущих винтов вертолетов различных аэродинамических схем.

Приборные или отсчетные устройства применяют в механизмах научно — исследовательских приборов, счетно-решающих устройствах, бытовой технике. Ведущие и ведомые элементы в этих устройствах могут изготавливаться из цветных металлов или синтетических и полимерных материалов.

Основным требованием к коническим системам в таких агрегатах является соблюдение высочайшей кинематической точности при изменении направления вращения.

В ней должны быть хорошо согласованы углы наклона ведущего и ведомого колеса, точно выверен угол поворота.

64. Передача винт-гайка: назначение, достоинства и недостатки, область применения.

Передача винт—гайка предназначена для преобразования вращательного движения в поступательное и наоборот. В ней используют пары винт—гайка скольжения или качения.

Достоинствами передачи винт—гайка скольжения являются большой выигрыш в силе, высокая точность перемещений, ма­лые размеры, возможность обеспечения самоторможения, что позволяет широко использовать ее в грузоподъемных меха­низмах, например в винтовых домкратах, в механизмах подач станков и приводах роботов, а также в измерительных и регулировочных механизмах. Достоинства передачи винт-гайка качения — сравнительно высокий КПД, высокая жесткость (с предварительным натягом полугаек), малый из­нос в сравнении с передачами скольжения.

К недостаткам передачи винт-гайка скольжения следует отнести низкий КПД в передачах скольжения, невозможность получе­ния больших скоростей поступательного движения.

Недостатком передачи винт-гайка качения является сложность и дороговизна изготовле­ния.

65. Передача винт-гайка скольжения, области применения, пример конструкции, критерии оценки работоспособности. Материалы элементов передач. Вывод зависимости для проектного расчета.

Достоинствами передачи винт—гайка скольжения являются большой выигрыш в силе, высокая точность перемещений, ма­лые размеры, возможность обеспечения самоторможения, что позволяет широко использовать ее в грузоподъемных меха­низмах, например в винтовых домкратах, в механизмах подач станков и приводах роботов, а также в измерительных и регулировочных механизмах.

К недостаткам передачи винт-гайка скольжения следует отнести низкий КПД в передачах скольжения, невозможность получе­ния больших скоростей поступательного движения.

Передачи скольжения до сих пор находят широкое примене­ние вследствие сравнительной простоты конструкции и отрабо­танной технологии получения резь­бы. С целью повышения КПД в пе­редачах винт—гайка скольжения используют резьбы, имеющие пони­женный приведенный коэффициент трения. К ним относят­ся трапецеидальные и упорные резь­бы с углами рабочего про­филя соответственно 15 и 3°. Трапе­цеидальная резьба в основном диа­пазоне диаметров бывает мелкая, средняя и крупная. В передачах ис­пользуют в основном среднюю резь­бу. Мелкую резьбу применяют в ме­ханизмах, где требуется повышенная точность перемещений, например в микрометрах, крупную — когда передача плохо защищена от пы­ли и грязи и подвержена износу. Упорные резьбы применяют, ког­да на передачу действует односто­ронняя нагрузка, например в на­жимных устройствах прокатных станов.

В паре винт—гайка скольжения для повышения износос­тойкости и снижения склонности к заеданию материал одной из деталей должен быть антифрикционным. Поэтому обычно используют стальные винты в сочетании с бронзовыми, реже чугунными гайками. Для изготовления винтов применяют стали 45, 50 улучшенные, стали 65Г, 40Х с закалкой и после­дующей шлифовкой, стали 40ХФА, 18ХГТ с азотированием для уменьшения искажения формы и размеров винтов в ре­зультате закалки. Гайки выполняют из оловянистых бронз, например БрО10Ф1, в менее ответственных конструкциях из безоловянистого сплава ЦАМ 10-5, а при малых скоростях скольжения и нагрузках используют антифрикционный чу­гун.

Основной причиной отказа передач винт-гайка является износ резьбы. Для обеспечения сопротивления изнашиванию ограничивают давление в резьбе

где F – осевая сила, d2 – средний диаметр резьбы, H1 – рабочая высота профиля, z=Hг/P – число витков резьбы, приходящаяся на высоту гайки.

Эта формула неудобна для практического использования, т.к. резьбы геометрически подобны, то вводят коэффициенты (рабочей высоты винта) и (высоты гайки).

 

Детали машин Н.Г. Куклин, Г.С.Куклина Стр. 162-177, 198-207  и законспектировать Тему Детали машин. Прилагается интернет материал в формате Word.

Решить и разместить фото.

Обратная связь: выполненные задания, вопросы отправляем в комментариях или личные сообщения преподавателю или на электронную почту колледжа dktidistanc@mail.ru

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: