Результаты эксперимента

 

Исследован методом ДБЭ рост слоев германия на кремнии в диапазоне температур от 250 до 700ОС. На рис.7 представлена характерная дифракционная картина поверхности Si(100), при дифракции быстрых электронов на отражение под малым углом падения.

 


Рисунок 7. Дифракционная картина чистой поверхности Si(100).

 

Центральное пятно – рефлекс зеркально отраженного пучка электронов. Три темные полосы, крайние боковые и центральная – тяжи, полученные пересечением обратной двумерной решетки со сферой Эвальда. Между ними находятся сверхструктурные тяжи, возникающие из-за присутствия на поверхности дополнительной периодичности (2x1).

На рис.8 показана характерная дифракционная картина от поверхности псевдоморфной пленки Ge на Si(100). Толщина слоя Ge равна 2 монослоя.

 

Рисунок 8. Дифракционная картина поверхности Si(100) с пленкой Ge 2 монослоя. Стрелками показаны тяжи от реконструкции (8x2).

 

При толщине пленки около 1 монослоя (МС) на дифракционной картине формируется сверхструктура (2xN) где N=8-12. Эта структурная перестройка заключается в удалении рядов димеров с поверхности плёнки, что приводит к частичной упругой релаксации напряженного гладкого германиевого слоя, в результате на дифракционной картине появляются дополнительные сверхструктурные тяжи.

При дальнейшем увеличение толщины Ge, из-за роста с толщиной энергии напряжений, с некоторой толщины, пленке становится выгоднее частично снять напряжения за счет увеличения площади поверхности. В результате на поверхности подстилающего слоя начинают образовываться островки("hut" кластеры), когерентно сопряженные в основании с подложкой и имеющие форму четырехгранных пирамид с ориентацией граней типа {105}. В результате, на дифракционной картине тяжи от дифракции на поверхности заменяются на рефлексы от объемной дифракции (на просвет) от островков. Из-за четкой огранки островков, возле объемных рефлексов, появляются линии обусловленные рассеянием на гранях островков (см. рис.8).

 

Рисунок 9.Дифракционная картина поверхности Si(100) с Ge "hut" кластерами (толщина пленки - 6 монослев). Стрелками показаны линии от рассеяния на гранях островков.

 

Увеличение толщины пленки Ge приводит к постепенному увеличению размеров "hut" островков, и при некоторой толщине трансформации "hut" островков в "dome". Характерная дифракционная картина от поверхности с "dome" островками показана на рис.9.

 


Рисунок 10. Дифракционная картина поверхности Si(100) с Ge "dome" островками (толщина пленки - 15 монослев). Стрелками показаны линии от рассеяния на гранях островков.

 

Расстояние на дифракционной картине между тяжами, в случае дифракции от поверхности или рефлексами, в случае дифракции от объема напрямую отражает значение параметра решетки (~1/a). Следя за изменением расстояния сначала между тяжами, а затем между положением объемных рефлексов можно контролировать "параметр решетки" растущей пленки в плоскости роста. На рис.10 представлено характерное поведение положения тяжей, в точках последующего появления объемных рефлексов.

Стрелками на рисунке показаны места на дифракционной картине вдоль которых снимался профиль интенсивности в процессе роста. Как видно из рисунка, в процессе роста расстояние между тяжами меняется. В начальный момент, когда дифракционная картина образована рассеянием на чистой поверхности кремния, можно считать, что расстояние между тяжами (l0) в этом случае соответствует параметру решетки объемного кремния. Тогда, изменение эффективной постоянной решетки в процессе роста можно вычислить по формуле:

 

d a / a =1- l / l 0

 


Рисунок 11. Изменение профиля интенсивности дифракционной картины вдоль горизонтального направления в процессе осаждения Ge на Si(100). Вверху и внизу показаны начальное и конечное изображение дифракционной картины.

 

Электронный луч, падающий под малым углом на поверхность (~0.50), проникает в поверхность неглубоко ~1-3 монослоя (для данной энергии электронов – 20кВ), поэтому параметр решетки рассчитанный из дифракционной картины соответствует параметру решетки самых верхних слоев поверхности.

На рис.12 показано характерное изменение эффективного параметра решетки в плоскости роста.

 


Рисунок 12. Изменение "параметра решетки" в процессе осаждения. (1) – Переход 2D-3D. (2) – Полная релаксация "dome" островков.

 

На зависимости параметра решетки от толщины можно выделить несколько характерных моментов изменения поведения:

Начиная с толщины пленки около одного монослоя и до трех монослоев, наблюдается рост параметра решетки.

В этой области напряженной пленке германия становится выгоднее иметь на поверхности большое количество двумерных островков, т.к. они частично снижают напряжения за счет релаксации. При этом, оказываясь сжатыми в основании, на верхней, свободной границе островки могу быть наоборот растянуты. С увеличением толщины пленки, увеличивается энергия упругих напряжений в пленке, и для ее снижения поверхности выгоднее иметь все большее и больше количество двумерных островков.

2. С трех до пяти монослоев происходит падение параметра решетки до значения почти соответствующему значению параметра решетки кремния.

При толщине пленки около 3 монослоя на месте двумерных островков начинают образовываться трехмерные островки, когерентно сопряженные в основании с подложкой. Дифракционная картина в данной ситуации представляет собой сумму от дифракции на поверхности смачивающего слоя и только зародившихся трехмерных островков. Профиль интенсивности снимается в точке появления объемных рефлексов, интенсивность которых на данной стадии еще мала, поэтому основной вклад в интенсивность в выбранной на картине точке будет давать псевдоморфный смачивающий слой германия, который имеет в плоскости роста параметр решетки как у кремния. Поэтому переход 2D - 3D к временному падению эффективного параметра решетки растущей пленки.

3. С толщины пленки порядка пяти монослоев идет постепенное увеличение параметра, до тех пор, пока не достигнет значения параметра решетки объемного германия.

По мере падачи материала на поверхность, трехмерные островки увеличиваются в размерах. "Hut" островки, будучи когерентно сопряжены в своем основании с подстилающим слоем, имеющим в плоскости роста параметр решетки кремния, к своей вершине постепенно релаксируют. И чем больше размер островка, тем большие толщины подвержены релаксации. "Dome" островки срелаксированны еще больше. При некоторой толщине пленки введенные в "dome" островки дислокации несоответсвия уже настолько снимают напряжения в островках, что электронный луч прошедший через островок "чувствует" в нем параметр решетки объемного германия.

Были так же измерены изменения вертикального профиля интенсивности вдоль нулевого тяжа от времени роста пленок (рис.13а). Рисунок представляет из себя последовательность профилей интенсивности вдоль нулевого тяжа в зависимости от толщины пленки германия. Угол отложен в соответствии с дифракционными картинами, приведенными на рис.7-10 (т.е. дифракционный угол увеличивается вниз). На протяжении роста первых 2-3 МС на профилях присутствует один максимум, который соответствует зеркальному рефлексу. Эта область соответствует двумерно-слоевому росту пленки. Затем интенсивность зеркального рефлекса уменьшается, а рядом разгорается объемный рефлекс. По мере роста пленки, интенсивность объемного рефлекса увеличивается, и при некотором значении толщины пленки происходит сдвиг объемного рефлекса в сторону больших углов.

Таким образом можно выделить три характерных области по толщине пленки, которые хорошо согласуются с изменениями дифракционных картин:

1. До начала перехода к трехмерному росту (<3MC) профиль представляет из себя в основном узкий и интенсивный пик, зеркального рефлекса.

В этой области происходит сверхструктурный переход 2х1 в 2хN, который явно не проявляется на профилях интенсивности, но сопровождается существенным снижением интенсивности зеркального рефлекса при толщине пленки около 1МС.

2. После перехода к трехмерному росту (>5-10MC и >3-4MC) профиль также представлят из себя более узкий и интенсивный пик, теперь являющийся объемным рефлексом. По мере роста пленки происходит изменение в интенсивности и сильное смещение объемного рефлекса.

Как уже указывалось выше, в этой области толщин наблюдаются дифракционные картины, свидетельствующие об образовании псевдомофных "hut" кластеров с ориентацией граней типа {105}.

3. При больших толщинах (>5-10MC), как уже указывалось выше, рефлекс постепенно смещается в сторону больших углов.

В этой области толщин наблюдаются дифракционные картины, свидетельствующие об образовании трехмерных островков с дислокациями несоответствия и огранкой типа {113}.

На рис.13 цифрами указаны моменты смены характерных областей на профиле.

 


Рисунок 13. (а) – Изменение профиля интенсивности дифракционной картины вдоль вертикального направления в процессе осаждения Ge на Si(100). (б) – Изменение интенсивности вдоль выделенное линии на (а). (1) – Переход 2D – 3D рост (начало образования "hut" островков). (2) – Переход "hut" – "dome".

 

Таким образом из анализа изменения горизонтального и вертикального профиля интенсивности дифракционной картины можно выделить три характерные толщины растущей пленки: (1) – переход от двумерного роста к трехмерному и начало образования на поверхности "hut" островков, (2) – переход "hut"островков в "dome" и (3) – полная релаксация "dome" островков. На рис.14 представлена кинетическая диаграмма морфологии поверхности пленки Ge на Si(100) в процессе роста, в зависимости от эффективной толщины осажденного германия и температуры роста.

 


Рисунок 14. Кинетическая диаграмма морфологии поверхности пленки Ge на Si(100). Скорость осаждения Ge – 0.05МС/сек.

 

Точность положения точек по относительной температуре в пределах 1-2%, по абсолютной температуре (сдвиг по температуре всей диаграмм) около 200. Точность по определению характерных толщин, составляет около 10% и определяется в основном неточностью определения скорости потока германия на поверхность и стабильностью работы источника.










Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: