Основные методы математического моделирования: аналитические, численные, имитационные, статистические

Аналитические методы состоят в построении математической модели в виде математических символов и отношений, при этом требуемые зависимости выводятся из математической модели последовательным применением математических правил.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.

Достоинство аналитических методов заключается в возможности получения решения в явной аналитической форме, позволяющей проводить детальный анализ процессов, протекающих в исследуемой системе, в широком диапазоне изменения параметров системы. Результаты в аналитической форме являются основой для выбора оптимальных вариантов структурно-функциональной организации системы на этапе синтеза.

Недостаток аналитических методов – использование целого ряда допущений и предположений в процессе построения математических моделей и невозможность, в некоторых случаях, получить решение в явном виде из-за неразрешимости уравнений в аналитической форме, отсутствия первообразных для подынтегральных функций и т.п. В этих случаях широко применяются численные методы.

Аналитические методы можно разделить на:

- точные;

- приближенные;

- эвристические (Эвристические методы – последовательность предписаний или процедур обработки информации, выполняемая с целью поиска более рациональных и новых конструктивных решений. Эвристические методы обычно противопоставляют формальным методам решения, опирающимся на точные математические модели. В психологической и кибернетической литературе под эвристическими методами понимаются любые методы, направленные на сокращение перебора).

Численные методы

Основываются на построении конечной последовательности действий над числами. Применение численных методов сводится к замене математических операций и отношений соответствующими операциями над числами, например, к замене интегралов суммами, бесконечных сумм – конечными и т.п. Результатом применения численных методов являются таблицы и графики зависимостей, раскрывающих свойства объекта. Численные методы являются продолжением аналитических методов в тех случаях, когда результат не может быть получен в явном виде. Численные методы по сравнению с аналитическими методами позволяют решать значительно более широкий круг задач.

Численная модель характеризуется зависимостью такого вида, который допускает только частные решения для конкретных начальных условий и количественных параметров моделей.

Статистические и имитационные методы

В тех случаях, когда анализ математической модели даже численными методами может оказаться нерезультативным из-за чрезмерной трудоемкости или неустойчивости алгоритмов в отношении погрешностей аппроксимации и округления, строится имитационная модель, в которой процессы, протекающие в ВС, описываются как последовательности операций над числами, представляющими значения входов и выходов соответствующих элементов.

Имитационная модель объединяет свойства отдельных элементов в единую систему. Производя вычисления, порождаемые имитационной моделью, можно на основе свойств отдельных элементов определить свойства всей системы. При построении имитационных моделей широко используется метод статистических испытаний (метод Монте-Карло - общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи.). Процедура построения и анализа имитационных моделей методом статистических испытаний называется статистическим моделированием. Статистическое моделирование представляет собой процесс получения статистических данных о свойствах моделируемой системы.

 Достоинством статистического моделирования является

• универсальность, гарантирующая принципиальную возможность проведения анализа систем любой степени сложности с любой степенью детализации.

• возможность исследовать особенности процесса функционирования системы S в любых условиях;

• за счет применения ЭВМ существенно сокращается продолжительность испытаний по сравнению с натурным экспериментом;

• результаты натурных испытаний реальной системы или ее частей можно использовать для проведения имитационного моделирования;

• гибкость варьирования структуры, алгоритмов и параметров моделируемой системы при поиске оптимального варианта системы;

• для сложных систем – это единственный практически реализуемый метод исследования процесса функционирования систем.

Недостаток статистического моделирования –

• трудоемкость процесса моделирования, большие затраты машинного времени.

• частный характер результатов, не раскрывающий зависимости, а лишь определяющий ее в отдельных точках.

• для полного анализа характеристик процесса функционирования систем и поиска оптимального варианта требуется многократно воспроизводить имитационный эксперимент, варьируя исходные данные задачи;




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: