Углекислый газ является парниковым в силу квантовых эффектов

 

Почему углекислый газ создаёт столь серьёзную парниковую проблему? Другими словами, почему он удерживает тепло в атмосфере? И почему водяной пар (молекулы воды в газообразной фазе, находящиеся в атмосфере) является ещё более серьёзным парниковым газом, чем CO2? Содержание в атмосфере водяного пара определяется испарением и конденсацией воды. Земные океаны представляют собой огромный резервуар воды, из которого она испаряется в атмосферу. С дождями, росой и снегом вода покидает воздух. Человек мало влияет на количество находящейся в воздухе воды, однако если Земля продолжит нагреваться, насыщенность атмосферы водяным паром возрастёт. Это ещё более усугубит парниковый эффект, связанный с выбросами CO2, поскольку H2O — это очень мощный парниковый газ. Мы, однако, можем влиять на количество CO2 в атмосфере, выбирая источники энергии и повышая эффективность их использования. Серьёзная роль CO2 и водяного пара как парниковых газов напрямую вытекает из квантовой теории.

 

Черноте́льный спектр Земли

 

В главах 4 и 9 мы обсуждали черноте́льное излучение. На рис. 9.1 изображён черноте́льный спектр Солнца, температура поверхности которого составляет чуть менее 6000 °C. Такое чёрное тело излучает значительную часть энергии в видимой области спектра, а также существенное её количество в ультрафиолетовом и инфракрасном диапазонах. Цвет испускаемого горячим предметом излучения зависит от его температуры. Горячие объекты испускают более короткие волны. Земля, конечно, намного холоднее Солнца. Тем не менее и она является черноте́льным излучателем, но испускает гораздо более длинные волны (менее энергичные фотоны). Солнечный свет со спектром, изображённым на рис. 9.1, падает на Землю. Часть этого света отражается обратно в космос льдом и другими светлыми объектами на поверхности. Однако значительная часть световой энергии превращается в тепло, согревающее Землю. Черноте́льное излучение Земли уносит в космос часть поступающей от Солнца энергии{37}.

В верхней части рис. 17.1 изображены три расчётных черноте́льных спектра Земли для трёх температур. Эти три кривые нормализованы так, чтобы в максимуме все они имели значение 1. 15 °C — это средняя температура поверхности Земли, 27 °C — температура поверхности в тропиках, а −16 °C — в субарктических регионах. Хотя кривые немного различаются, в целом они очень похожи. При обсуждении роли углекислого газа эти различия несущественны.

 

 

Рис. 17.1. Вверху: расчётные черноте́льные спектры Земли для трёх температур (сплошные кривые). Выделенные области соответствуют участкам спектра, в которых происходит сильное поглощение содержащимися в атмосфере водяным паром и углекислым газом. Посередине и внизу: спектры сильного поглощения углекислым газом и водяным паром в диапазоне от 0 до 1000 см −1. Обратите внимание, что здесь шкала отличается от использованной на верхнем графике

 

Поглощение земного черноте́льного излучения

 

Нижние два спектра на рис. 17.1 (обратите внимание, что шкала отличается от шкалы верхнего спектра) показывают влияние углекислого газа и водяного пара на пропускание атмосферой инфракрасного излучения в длинноволновой части спектра. Пропускание, равное единице, означает, что весь свет проходит сквозь атмосферу. Нулевое пропускание означает, что свет полностью поглощается в атмосфере. Эти спектры меняются в зависимости от региона Земли, где они измеряются. Приведённые кривые дают о них лишь общее представление. Кроме того, на них опущена сложная тонкая структура (пики и впадины), особенно в спектре водяного пара. Смысл этих кривых в том, чтобы показать наиболее существенные особенности поглощения инфракрасного излучения углекислым газом и водяным паром в области, на которую приходится основная часть земного черноте́льного спектра. Эти области поглощения показаны тоном и штриховкой на верхнем графике. Водяной пар также вызывает значительное поглощение в районе 1750 см −1; эта область тоже отмечена. Инфракрасное поглощение мешает части земного черноте́льного излучения уходить в космос. Без этого атмосферного поглощения Земля была бы намного холоднее.

 

Почему углекислый газ так важен?

 

Причину, по которой углекислый газ настолько важен, можно понять, присмотревшись к выделенному тоном участку черноте́льного спектра и спектру поглощения. Водяной пар поглощает практически всё более длинноволновое излучение, чем 500 см −1. Однако два нижних спектра на рис. 17.1 показывают, что углекислый газ поглощает излучение как раз в той области, где водяное поглощение незначительно. Полоса поглощения углекислого газа лежит очень близко к пику спектра земного черноте́льного излучения, и, как видно на верхнем графике рис. 17.1, это не зависит от того, какова температура земной поверхности. Таким образом, углекислый газ вызывает сильное поглощение земного черноте́льного излучения в важном спектральном диапазоне, где другие составляющие атмосферы, в частности водяной пар, не проявляются. На спектре поглощения углекислого газа (средний график на рис. 17.1) видно, что в середине полосы поглощения вокруг частоты 667 см −1 пропускание близко к нулю. Однако с увеличением концентрации CO2 область очень сильного поглощения становится шире, а в части спектра, где пропускается лишь несколько процентов, излучение вовсе перестаёт уходить с Земли в космос. Итак, CO2 вызывает сильное поглощение вблизи пика земного черноте́льного излучения, где у водяного пара нет такого эффекта, а с ростом концентрации CO2 атмосфера будет удерживать в ловушке больше черноте́льного излучения, вызывая нагрев планеты.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: