Основные отделы ЦНС, физиологическая роль коры больших полушарий

 Головной мозг, с окружающими его оболочками находится в полости мозгового черепа. Верхняя вентральная поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа. Нижняя поверхность - основание головного мозга, имеет сложный рельеф, соответствующий черепным ямкам внутреннего основания черепа. В головном мозге выделяют три больших отдела – ствол, подкорковый отдел и кору больших полушарий. Из основания мозга выходят 12 пар черепных нервов (см. Приложение 1).

Масса мозга взрослого человека колеблется от 1100 до 2000 г. На протяжении от 20 до 60 лет масса и объем остаются максимальным и постоянным для каждого индивидуума.

 Полушария головного мозга состоят из подкорковых ганглиев и мозгового плаща, которые окружают полости, - боковые желудочки. У взрослого человека масса больших полушарий составляет около 80% массы головного мозга. Правое и левое полушария разделены глубокой продольной бороздой. В глубине этой борозды находится мозолистое тело, образованное нервными волокнами. Мозолистое тело соединяет левое и правое полушария.

Плащ у человека представлен корой головного мозга. Это серое вещество больших полушарий. Оно образовано нервными клетками с отходящими от них отростками и клетками нейроглии (клетки, выполняющие опорную функцию для нейронов; полагают, что нейроглия участвует в обмене веществ нейронов).

 Кора больших полушарий головного мозга является высшим, филогенетически наиболее молодым образованием центральной нервной системы. Она покрывает всю поверхность больших полушарий слоем толщиной от 1,5 до 3 мм. Общая поверхность полушарий коры у взрослого человека 1700 – 2000 кв.см. в коре насчитывают от 12 до 18 млрд. нервных клеток. Общая поверхность коры головного мозга увеличивается за счет многочисленных борозд, которые делят всю поверхность полушария на выпуклые извилины и доли (см. приложение 2).

 Три главные борозды – центральная, боковая и теменно-затылочная – делят каждое полушарие на четыре доли: лобную, теменную, затылочную и височную.

Мембранный потенциал покоя. Ионные механизмы, поддерживающие потенциал покоя клетки.

Разность потенциалов между внутренней и наружной поверхностью клетки называется мембранный потенциал покоя (МПП), для разных клеток он колеблется от – 60 до –90 милливольт. Величина внутриклеточного электрического потенциала, например, у нервных клеток, составляет приблизительно -70 мв.

Возбудимые клетки способны реагировать на раздражение и возбуждаться потому, что в исходном состоянии они поляризованы, т.е. обладают разностью потенциалов между внутренней стороной мембраны, которая заряжена отрицательно, и окружающей средой. Клетка, не имеющая такого потенциала, не способна ответить на раздражение, поэтому во всех возбудимых клетках постоянно протекают процессы, поддерживающие этот потенциал. Таким образом – мембранный потенциал покоя – основа возбудимости клетки.

Клеточная мембрана, отделяющая клетку от окружающего пространства, построена из двух слоев жироподобных молекул, которые называются фосфолипиды. Есть белки, которые пронизывают мембрану насквозь, такие белки называются интегральными. Интегральные белки могут образовывать в мембране пору (отверстие, заполненное водой) для транспорта ионов.

Ионные каналы

Ионные каналы представлены интегральными белками мембраны. Эти белки способны, при определенных воздействиях, изменять свою конформацию (форму и свойства) таким образом, что пора, через которую может пройти какой-либо ион открывается или закрывается. Известны натриевые, калиевые, кальциевые, хлорные каналы, иногда канал может пропускать два иона, например известны натрий – кальциевые каналы. Через ионные каналы осуществляется только пассивный транспорт ионов

Ионные каналы обладают двумя важнейшими свойствами: 1) избирательностью (селективностью) по отношению к определенным ионам и 2) способностью открываться (активироваться) и закрываться. При активации канал открывается и пропускает ионы.

Активация каналов возможна несколькими путями. Во-первых, каналы могут открываться и закрываться при изменении потенциала мембраны. Изменение заряда приводит к изменению конформации белковых молекул, и канал становится проницаемым для иона. Для изменения свойств канала достаточно ничтожного колебания потенциала мембраны. Такие каналы называются потенциал-зависимые (или электроуправляемые). Во-вторых, каналы могут быть частью сложного белкового комплекса, который называется мембранный рецептор. В этом случае изменение свойств канала обусловлено конформационнй перестройкой белков, которая происходит в результате взаимодействия рецептора с биологически активным веществом (гормоном, медиатором). Такие каналы называются хемозависимые (или рецептор-управляемые ). Кроме того, каналы могут открываться при механическом воздействии – давлении, растяжении.По скорости, с которой открываются и закрываются каналы их можно разделить на быстрые и медленные.  

Большинство каналов (калиевые, кальциевые, хлорные) могут находиться в двух состояниях: открытом и закрытом.

В работе натриевых каналов есть некоторые особенности. Этим каналам, как и калиевым, кальциевым, хлорным свойственно находиться или в открытом, или в закрытом состоянии, однако, натриевый канал может быть и инактивирован, этот состояние, в котором канал закрыт и не может быть открыт никаким воздействием (рис.10).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: