Цветные металлы и сплавы

Алюминий и его сплавы

Алюминий —металл серебристого цвета, характеризующийся низкой плотностью (2,7 г/см3), высокой пластичностью (δ = 40%), низкими прочностью (ση= 80МПа) и твердостью (НВ 25). Температура плавления —659°С. Обладает высокой электропроводностью и коррозионной стойкостью.

Маркируется ы А85, А8, А7, А6, А5, АО.

Литейные сплавы алюминия маркируются буквами АЛ и числом, показывающим условный номер сплава, АЛ2, содержащий 10-12% кремния, литейные сплавы алюминия с медью (АЛ7) и магнием (АЛ8).

Медь и ее сплавы Медь —металл красно-розового цвета. Основные сплавы меди —латуни и бронзы. Латунями называют сплавы меди с цинком. Цинк повышает прочность и пластичность сплава, но до определенных пределов.

Латуни характеризуются высокой электропроводностью и теплопроводностью, коррозионной стойкостью, хорошо обрабатываются резанием.

Латуни маркируются буквой Л. Например, латунь Л63 содержит 63% меди и 37% цинка. Латунь ЛАЖ 60-1-1 содержит 60% меди, 1% алюминия, 1% железа и 38% цинка.

Бронзами называются сплавы меди с оловом, алюминием, свинцом и другими элементами, среди которых цинк не является основным. Бронзы обладают высокой коррозионной стойкостью, хорошими литейными свойствами, хорошо обрабатываются давлением и резанием. Маркируются бронзы буквами Бр, за которыми показывается содержание легирующих элементов в %., например, деформируемая бронза БрОФ 6,5-0,4 содержит 6,5% олова и 0,4% фосфора, а литейная бронза БрОЗЦ7С5Н —3% олова, 7% цинка, 5% свинца, менее 1% никеля.

Магний и его сплавы.

Свойства магния значительно улучшаются при сплавлении его с другими элементами, основные из которых —алюминий, марганец и цинк. Литейные сплавы маркируются буквами МЛ, а деформируемые —МА.

Титан и его сплавы.

Маркируются титановые сплавы чаще всего буквами ВТ. Среди сплавов титана имеются обладающие высокой прочностью (ВТ6, ВТ 14 с σ = 1000-1200 МПа), жаропрочностью до 500°С (ВТЗ-1, ВТ8).

 

 

 

Коррозия металлов

 

Коррозией называется разрушение металла под действием внешней агрессивной среды в результате ее химического или электрохимического воздействия. Различают химическую коррозию, обусловленную воздействием на металл сухих газов и неэлектролитов (например, нефтепродуктов) и электрохимическую, возникающую под действием жидких электролитов или влажного воздуха. По характеру коррозионного разрушения различают сплошную и местную коррозию. По характеру взаимодействия металла с окружающей средой различают химическую и электрохимическую коррозию. Химическая коррозия возникает при действии на металл сухих газов или жидкостей не электролитов (бензина, масла, смол). Электрохимическая коррозия сопровождается появлением электрического тока, возникающего при действии на металл жидких электролитов (водных растворов солей, кислот, щелочей), влажных газов и воздуха (проводников электричества).

Одними из самых популярных и относительно недорогих мер защиты от коррозии сегодня являются методы, изменяющие химический состав металла в поверхностных слоях. Как правило, это электрохимические способы нанесения покрытий на металл.

При покрытии другими металлами в зависимости от вида коррозии покрывающий слой наносят различными способами. В качестве покрывающего материала часто используется хром или никель. Хромирование – электролитическое нанесение покрытия из хрома на поверхность металлического изделия. Никелирование, также нанесение на поверхность изделий никеля толщиной от 2 до 50 мкм.

 

Наилучший из этих элементов —хром. Хромоникелевые стали обычно содержат 18% хрома и 9-12% никеля

Другие методы защиты от коррозии. Распространенным средством защиты от коррозии является нанесение на защищаемый металл различных покрытий. Металлические покрытия наносятся различными способами. При погружении в расплавленный металл поверхность изделия покрывается тонким и плотным слоем, затвердевающим после извлечения изделия. Этот способ применяется для нанесения покрытий цинком, оловом, свинцом и алюминием, температура плавления которых ниже, чем у защищаемого металла. При диффузионной металлизации изделие засыпают порошками алюминия, хрома, цинка и выдерживают при высокой температуре. При напылении поверхность изделия покрывают слоем расплавленного металла (цинка, алюминия, кадмия и др.) с помощью воздушной струи. При плакировании защищаемый металл подвергают совместной прокатке с защищающим (алюминием, титаном, нержавеющей сталью). Гальванический способ нанесения покрытий основан на осаждении под действием электрического тока тонкого слоя защитного металла (хрома, никеля, меди, кадмия) при погружении защищаемого изделия в раствор электролита.

Неметаллические покрытия подразделяются на лакокрасочные и эмалевые, смоляные, покрытия пленочными полимерными материалами, резиной, смазочными материалами, керамические покрытия и др. Покрытия, получаемые химической и электрохимической обработкой, превращают поверхностный слой изделия в химическое соединение, образующее сплошную защитную пленку. Наибольшее распространение имеют оксидные и фосфатные защитные пленки. Протекторная защита основана на подсоединении к защищаемому изделию протектора с более отрицательным электрохимическим потенциалом. В агрессивной среде протектор будет являться анодом и разрушаться, а защищаемое изделие —катодом и разрушаться не будет. Для уменьшения агрессивности окружающей среды в нее вводят добавки, называемые ингибиторами коррозии. Они значительно снижают скорость коррозии. Условием использования ингибиторов является эксплуатация изделия в замкнутой среде постоянного состава.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: