Измерение расхода жидкостей

 

1.1 Цель работы

 

Целью работы является приобретение навыков по использованию двух типов расходомеров, применяемых для измерения расхода жидкостей – расходомера с переменным перепадом давления (сужающего устройства с дифференциальным манометром) и расходомера с постоянным перепадом давления (ротаметра).

 

1.2 Введение

 

В промышленных и лабораторных условиях одной из важнейших является задача измерения расхода – количества вещества, проходящего в единицу времени через трубопровод или канал.

Массовый расход выражается в единицах массы за единицу времени (кг/c, т/ч). Объемный расход выражается в единицах объема за единицу времени (м3/с, л/ч).

Известно более десятка надежных методов измерения расхода. Наиболее широко распространены следующие:

– по перепaду давления на сужающем устройстве (расходомерная диафрагма, сопло, сопло Вентури);

– по высоте поднятия поплавка потоком в вертикальной конической трубке (ротаметр);

– по частоте вращения турбинки или крыльчатки, которые устанавливаются непоcрeдственно в поток (тахометрический расходомер);

– по величине ЭДС, возникающей в проводящей жидкости при ее движении в магнитном поле (электромагнитный расходомер).

Определенным преимуществом первых двух указанных методов является возможность измерения расхода без применения электронных преобразователей. Выпускаются также модификации соответствующих типов расходомеров, обеспечивающие дистанционную передачу показаний в электронном виде.

Более подробно с методами измерения расхода и разными типами расходомеров можно ознакомиться в справочнике [1]. Измерение расхода по перепаду давления на сужающем устройстве

 

На рис. 1.1 показано сужающее устройство в виде участка трубопровода с установленной в нем расходомерной диафрагмой.

 

 

 

 


Рис. 1.1 Схема установки расходомерной диафрагмы в трубопровод

1 –участок трубопровода; 2 – сужающее устройство;
3 – трубки отбора давления.

 

 

Диафрагма представляет собой тонкий диск c круглым центральным отверстием, которое имеет диаметр  и площадь . Трубопровод имеет внутренний диаметр  и площадь сечения . До некоторого сечения A поток остается невозмущенным и движется со средней скоростью .

Сужение потока начинается перед диафрагмой и продолжается за диафрагмой до некоторого сечения B, где поток достигает максимального сужения. Далее пoтoк постепенно расширяется до полного сечения трyбопровода.

В соответствии с законом сохранения энергии, в суженном сечении скорость потока увеличивается за счет перехода части потенциальной энергии давления в кинетическую. В результате статическое давление в суженном сечении становится меньше статического давления перед сужающим устройством. Разность (перепад) статических давлений зависит от расхода.

Отбор статических давлений  и  осуществляется с помощью двух отверстий в трубопроводе, расположенных непосредственно до и после диска диафрагмы. Перепад давлений измеряется с помощью дифференциального манометра.

Штриховыми линиями на рис. 1.1 показаны линии тока основного течения. В угловых зонах между стенками трубопровода и диафрагмой возникают застойные области, в которых образуются вторичные вихревые течения (их линии тока на рисунке не показаны).

Установлено [2], что для несжимаемой жидкости массовый
расход связан с перепадом давления на диафрагме выражением

                         ,                                    (1.1)

где  – массовый расход жидкости, кг/с;

– перепад давлений на диафрагме, Па;

– плотность жидкости, кг/м3;

– проходное сечение диафрагмы, м2;

– диаметр отверстия в диафрагме, м;

– коэффициент расхода (безразмерный).

В общем виде коэффициент расхода выражается функциональной зависимостью

                              ,                                          (1.2)

где   – относительная площадь сужающего устройства;

– проходное сечение трубопровода, м2;

– диаметр трубопровода, м;

– число Рейнольдса;

– средняя по сечению трубопровода скорость потока, м/с;

– кинематический коэффициент вязкости, м2/с.

 

Если среднюю скорость потока выразить через массовый расход, то формула для числа Рейнольдса запишется в виде

                                  ,                                          (1.3)

где   – динамический коэффициент вязкости, Па×с.

Для диафрагм при фиксированном значении  коэффициент расхода с ростом числа Рейнольдса монотонно падает, стремясь к некоторому асимптотическому значению.

Существуют стандартные сужающие устройства, при изготовлении и применении которых должны соблюдаться определенные требования. Для стандартных устройств зависимости типа (1.2) известны [2], поэтому коэффициенты расхода могут быть определены расчетным путем, с заранее известной погрешностью.

Стандартные расходомерные диафрагмы могут применяться в трубопроводах диаметром 50 мм. Если же диаметр трубопровода меньше 50 мм, то требуется индивидуальная градуировка коэффициента расхода и проверка его зависимости от числа Рейнольдса.

 

Измерение расхода жидкости ротаметром

 

Ротаметры предназначены для измерения объемного расхода однородных потоков жидкостей и газов. Схема ротаметра показана на рис. 1.2.

Ротаметр представляет собой конyсную стеклянную трубку, расположенную вертикально, внутри которой находится поплавок. Между поплавком и внутренней поверхностью конусной трубки образуется кольцевой зазор, площадь которого зависит от высоты поплавка. Поток жидкости или газа протекает снизу вверх, создавая перепад давления на кольцевом зазоре, как на сужающем устройстве.

На поплавок действует подъемная сила, в создании которой участвует не только перепад давлений, но также силы вязкого трения, действующие на боковую поверхность поплавка при протекании потока в кольцевом зазоре, сила гидростатического выталкивания (архимедова сила) и динамический напор набегающего потока. Вес поплавка всегда уравновешивается суммарной подъемной силой. Каждому положению поплавка соответствует определенное значение расхода.

Оказывается, что при изменении расхода поплавок стремится занять положение, при котором перепад давлений на кольцевом зазоре сохраняется. Фактически можно считать, что сохраняется перепад давления между близкими к поплавку сечениями A и  B.

Для снятия показаний ротаметра на стеклянной конусной трубке наносится равномерная условная шкала. В качестве указателя положения поплавка относительно шкалы служит верхняя горизонтальная плоскость самого поплавка.

На предприятиях, выпускающих ротаметры, последние индивидуально градуируются. Ротаметры поставляются с паспортом, в котором имеется таблица градуировки, связывающая условную шкалу с конкретными значениями расхода.

Жидкостные ротаметры градуируются по воде, и в паспорте приводится температура, при которой проводилась градуировка, а также плотность и вязкость воды. В случае использования других жидкостей таблица градуировки пересчитывается по известной методике с учетом изменения плотности и вязкости жидкости.

 

1.3 Описание лабораторного гидростенда

На рис. 1.3 приведена схема лабораторного гидростенда, предназначенного для испытаний расходомерных устройств. В состав гидростенда входят два ротаметра и одно сужающее устройство. Ротаметры однотипные, но имеют разные пределы измерений. Вода поступает из напорной магистрали через входной вентиль и фильтр.


 

 

 


Рис. 1.3. Схема лабораторного гидростенда.

1 – основной регулировочный вентиль; 2 – вентиль-ограничитель; 3,4,5 – запорные вентили расходомеров; 6 – вентиль-регулятор; 7 – ниппель; 8 –мерная кружка; 9,10 – сливная воронка.

 

Необходимый расход устанавливается основным регулировочным вентилем 1. Вспомогательный вентиль 2 служит для ограничения максимального расхода. Для включения или выключения рабочего режима расходомеров служат запорные вентили 3, 4 и 5. Если какой-либо из этих вентилей полностью закрыт, то весь поток воды направляется в обход него через соответствующий расходомер – обеспечивается рабочий режим измерений. Если наоборот, какой-либо из этих вентилей открыт, то он шунтирует свой расходомер, при этом почти весь поток проходит через вентиль, минуя расходомер – последний считается выключенным.

Далее весь поток сливается через ниппель 7 в мерную кружку 8 или просто в сливную воронку 9. Мерная кружка используется, если требуется измерить массовый расход воды весовым способом.

Для измерения перепада давления на диафрагме служит дифференциальный манометр (дифманометр). Нижние концы трубок дифманометра подключены к отборам статических давлений  и . Верхние концы трубок дифманометра открыты, сообщаются с атмосферой и расположены над воронкой 10, которая в случае перелива направляет воду в сливную магистраль. Разность уровней воды  в трубках дифманометра измеряется по линейке, проложенной между трубками.

На выходе из сужающего устройства установлен регулирующий вентиль 6, с помощью которого можно изменять средний уровень водяных столбов в дифманометре. Кроме того, если в рабочем режиме этот вентиль закрыть, то весь поток воды направится через отборы давлений по трубкам дифманометра на перелив, унося с собой загрязнения и пузырьки воздуха.

Ниже приводятся основные параметры сужающего устройства и ротаметров, установленных на гидростенде.






Сужающее устройство.

Диаметр отверстия в диафрагме, = 4,4 мм.

Диаметр трубопровода, = 7,9 мм.

Ротаметры.

На лабораторном гидростенде установлены жидкостные ротаметры
типов РМ–4–0,16 ЖУ3 и РМ–4–0,25 ЖУ3 с номинальными пределами
измерений 0,16 и 0,25 м3/ч соответственно.

В табл. 1.1 приводятся индивидуальные заводские градуировки ротаметров, выполненые при температуре воды 18 ºС.

                                                                                                                

 

 

Т а б л и ц а 1.1

Заводские градуировки ротаметров

Отметка шкалы

0 20 40 60 80 100

Расход, л/ч

РМ–4–0,16 ЖУ3 20 46 76 107 140 171
РМ–4–0,25 ЖУ3 41 80 121 161 209 259

 

Допускаемая основная погрешность ротаметров составляет ±2,5% от номинальных пределов измерений.

Дополнительная погрешность не превышает половины основной допускаемой погрешности на каждые 10 ºС изменения температуры воды.

 

1.4 Проведение работы

В лабораторной работе необходимо выполнить градуировку сужающего устройства и одного из ротаметров (по указанию преподавателя).

Для измерения расхода на гидростенде в качестве образцового применяется весовой способ. Для этого используются мерная кружка, лабораторные весы и секундомер.

В установившемся рабочем режиме измерения пустая мерная кружка подставляется под струю слива из ниппеля с одновременной фиксацией по секундомеру начального момента времени. После заполнения водой кружка убирается из-под струи с одновременной фиксацией конечного момента времени. Масса собранной воды определяется как разность масс полной и пустой кружки.

Массовый расход рассчитывается по формуле ,

где  – масса собранной воды, кг;

– интервал времени заполнения кружки, с.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: