Лекция
Основные законы движения жидкостей и газов
Для расчета движения воды в трубопроводе нужно знать не так уж и много. Для этого не надо глубоко изучать физику, но всё же некоторое основные понятия изучить придется.
В этой статье я приведу самые основные формулы, которые вам пригодятся не только для расчетов, но и для общего понимания, что может влиять в вашем водопроводе на его течение. Иногда общее понимание процессов поможет вам избежать ошибок при монтаже системы.
Например, не все знают, что в части водопровода с трубами меньшего диаметра давление на стенки меньше, чем на участке с трубами большего диаметра. Почему возникает кавитация и вообще, что это такое. А это надо знать.
Уравнение неразрывности
Для жидкости, текущей в трубе, этот закон используют в такой форме (называемой уравнением неразрывности):
v⋅S = const
Где v - скорость жидкости S - площадь сечения трубы, по которой течёт жидкость. Сформулировать этот закон можно и так:
Сколько вливается жидкости в ёмкость, в данном случае в трубу, столько должно и выливаться, если условия течения не изменяются.
Скорость в узких участках трубы должна быть выше, чем в широких.
Подробнее об этом можно прочитать в статье Основные понятия гидродинамики. Уравнение непрерывности.
Уравнение Бернулли стационарного движения
Одно из важнейших уравнений гидромеханики было получено в 1738 г. швейцарским учёным Даниилом Бернулли (1700 - 1782). Ему впервые удалось описать движение идеальной жидкости, выраженной в формуле Бернулли.
Идеальная жидкость - жидкость, в которой отсутствуют силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда.
Уравнение стационарного движения, носящее его имя, имеет вид:
| P + | ρ⋅v² | + ρ⋅g⋅h = const |
| 2 |
где P - давление жидкости, ρ − её плотность, v - скорость движения, g - ускорение свободного падения, h - высота, на которой находится элемент жидкости.
Смысл уравнения Бернулли в том, что внутри системы заполненной жидкостью (участка трубопровода) общая энергия каждой точками всегда неизменна.
В уравнении Бернулли есть три слагаемых:
· ρ⋅v2/2 - динамическое давление - кинетическая энергия единицы объёма движущей жидкости;
· ρ⋅g⋅h - весовое давление - потенциальная энергия единицы объёма жидкости;
· P - статическое давление, по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии ("энергии давления").
Это уравнение объясняет почему в узких участках трубы растёт скорость потока и падает давление на стенки трубы. Максимальное давление в трубах устанавливается именно в месте, где труба имеет наибольшее сечение. Узкие части трубы в этом отношении безопасны, но в них давление может упасть настолько, что жидкость закипит, что может привести к кавитации и разрушению материала трубы.
Явление кавитации
Кавитация (от латинского cavitas - "углубление", "полость") - процесс образования полостей (пузырьков) в движущейся жидкости вследствие понижения давления.
Явление кавитации также объясняется уравнением Бернулли. Если скорость течения жидкости значительно возрастает, то давление сильно понизится - настолько, что жидкость закипит. Такую скорость можно получить, если пропускать жидкость через очень узкий участок трубы или при быстром обращении лопатки в водяном насосе.
Пузырьки по ходу движения жидкости попадают в области жидкости с нормальным давлением и там схлопываются. Это схлопывание сопровождается гидродинамическими эффектами, способными привести к разрушению трубы или стенок насоса.
Гидродинамика Эйлера и Навье-Стокса
Уравнение Бернулли позволяет объяснить очень много интересных гидродинамических явлений, но гораздо больше явлений, происходящих в движущихся жидкостях и газах, с его помощью объяснить нельзя, потому что этот закон для идеальной жидкости, т.е для жидкости, которая не обладает внутренним трением, а значит не создает гидравлическое сопротивление..
Реальная жидкость отличается от идеальной и обладает внутренним трением, или по другому называют вязкостью. Два соприкасающиеся элемента жидкости, двигающиеся в одном и том же направлении, но с разными скоростями, воздействуют друг на друга. Сила взаимодействия ускоряет медленно движущийся элемент жидкости и замедляет более быстрый.
Закон вязкого трения Ньютона
Ньютон предположил, что величина этой силы (называемой силой внутреннего трения) пропорциональна разности скоростей элементов жидкости. Следовательно, сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости:
| F = | η⋅S⋅ | dv | |
| dy |
η − коэффициент динамической вязкости.
Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются ньютоновскими, или жидкостями с линейной вязкостью.
Величину коэффициента динамической вязкости (и справедливость данного закона) Ньютон определил с помощью несложного опыта: он передвигал по поверхности жидкости пластинку с той или иной скоростью. Для того чтобы поддерживать эту скорость постоянной, требовалась сила, которая при небольшой глубине жидкости оказалась прямо пропорциональна площади S и скорости пластинки v и обратно пропорциональна глубине жидкости h:
| F = | η⋅S⋅v | |
| h |
И хотя при увеличении глубины жидкости h сила вязкого трения пластинки не становится исчезающе малой, эта формула довольно точно описывает взаимодействие между соприкасающимися элементами жидкости.
Чем больше разность скоростей, тем больше сила, с которой они воздействуют друг на друга, заставляя притормаживать слишком быстро движущиеся элементы и разгоняя слишком медленные.
В результате относительное движение в жидкости прекращается (но иногда это может произойти не очень скоро).
Уравнение Навье - Стокса для вязких жидкостей
В более строгой формулировке линейная зависимость вязкого трения от изменения скорости движения жидкости называется уравнением Навье - Стокса. Оно учитывает сжимаемость жидкостей и газов и, в отличие от закона Ньютона, справедливо не только вблизи поверхности твёрдого тела, но и в каждой точке жидкости (у поверхности твёрдого тела в случае несжимаемой жидкости уравнение Навье - Стокса и закон Ньютона совпадают).

Любые газы, для которых выполняется условие сплошной среды, подчиняются и уравнению Навье - Стокса, т.е. являются ньютоновскими жидкостями.
Вязкость жидкости и газа обычно существенна при относительно малых скоростях, потому иногда говорят, что гидродинамика Эйлера - это частный (предельный) случай больших скоростей гидродинамики Навье - Стокса.
При малых скоростях в соответствии с законом вязкого трения Ньютона сила сопротивления тела пропорциональна скорости. При больших скоростях, когда вязкость перестаёт играть существенную роль, сопротивление тела пропорционально квадрату скорости (что впервые обнаружил и обосновал Ньютон).
Критерий Рейнольдса
Такую зависимость вывел английский физик и инженер Осборн Рейнольдс (1842 - 1912).
Критерий, который помогает ответить на вопрос, есть ли необходимость учитывать вязкость, является число Рейнольдса Re. Оно равно отношению энергии движения элемента текущей жидкости к работе сил внутреннего трения.
Рассмотрим кубический элемент жидкости с длиной ребра n. Кинетическая энергия элемента равна:
| Eкин = | ρ⋅n³⋅ | v² | |
| 2 |
Согласно закону Ньютона, сила трения, действующая на элемент жидкости, определяется так:
| F = | η⋅v⋅n² | = η⋅v⋅n | |
| n |
Работа этой силы при перемещении элемента жидкости на расстояние n составляет
A = F⋅n = η⋅v⋅n²
а отношение кинетической энергии элемента жидкости к работе силы трения равно
| Eкин | = | ρ⋅n³⋅v² | ||
| A | 2⋅ η⋅v⋅n² |
Сокращаем и получаем:
| Re = | ρ⋅n⋅v | |
| 2η |
Re - называется числом Рейнольдса.






