Приводы мешалок

Тихоходные мешалки – лопастные, якорные и т. п. – обычно приводятся во вращение от индивидуального электродвигателя через зубчатую передачу.

Приводы обычно устанавливают на крышках аппаратов, в которых мешалка работает, иногда на балках или рамах, укрепленных на крыше. Если вал длинный, то на днище сосуда монтируется дополнительная опора. В современных конструкциях привод обычно осуществляется непосредственно от электродвигателя, через редуктор.

Для комбинированных мешалок применяются приводы типа, изображенного на рисунке 14.

Рисунок 14 - Привод комбинированной мешалки.

От вала 1 вращение передается через две конические зубчатые передачи: через колеса 3 и 5 в одном направлении и через колеса 2 и 4 в обратном направлении. Если передаточные числа обеих пар одинаковы, то валы колес 4 и 5 будут вращаться с одинаковой скоростью, но в разные стороны.

Если комбинированная мешалка состоит из тихоходной и быстроходной мешалок, ставятся два независимых привода. Якорная мешалка приводится во вращение от электродвигателя через пару конических колес, а турбинная – от своего электродвигателя (валы соединены муфтам).

Если места на крышке сосуда или над ней недостаточно, привод располагают под сосудом, что, однако требует установки хорошего сальникового уплотнения.

Приводы пропеллерных мешалок чаще всего осуществляются в зависимости от скорости вращения: 1.от электродвигателя, непосредственно связанного с валом мешалки; 2.от электродвигателя через шестеренчатую передачу; 3.от электродвигателя со встроенным редуктором; 4.от электродвигателя через клиноременную передачу.

Пример привода первого типа для стационарных пропеллеров показан на рисунке 15.

Применяются также электродвигатели с регулируемым числом оборотов, что делает мешалку более универсальной, в тех случаях, когда в процессе перемешивания резко изменяется вязкость системы. Для вертикальных стационарных пропеллеров, при обычных на практике диаметрах и скоростях вращения валов, считают допустимой длину вала до 1,8 м. Если необходимо иметь большую длину, то принимают следующие меры: 1. Устанавливают стабилизаторы в виде наваренных на лопасти пропеллера крылышек (рисунок 16а) или в виде широкого кольца со спицами, укрепляемого на конце вала (рисунок 16б). 2. Устанавливают концевые подшипники, монтируемые на днище сосуда, как это показано на рисунок 17а и б.
  1. Устанавливают дополнительный подшипник в приводе (рисунок 18а, или дополнительный вынесенный подшипник (рисунок 18в).
Рисунок 15 - Привод пропеллерной мешалки.
Рисунок 16 - Приспособления для снижения амплитуды колебаний вала мешалки. Рисунок 17 - Концевые подшипники мешалок.

Рисунок 18 - Дополнительные подшипники в приводах мешалок.

Для уменьшения длины вала прибегают к установке привода под сосудом. Более короткие валы имеют также боковые мешалки, привод которых устанавливается или на вертикальной стенке сосуда, или на днище в случае горизонтальных сосудов.

Стойки отливают из чугуна или сваривают из углеродистой стали. Они представляют собой цилиндры или усеченные конусы, снабженные верхним и нижним присоединительными фланцами. В обечайке стоек имеются вырезы для удобства монтажа и демонтажа.

в приводах концевые опоры служат для подвижного закрепления нижнего конца вала перемешивающего органа. Опоры состоят (рисунок 19) из стойки 1, к которой болтами 7 прикреплен подшипник 2, в нем закреплена штифтами 5 неподвижная втулка 4. На нижнем конце вала закреплена болтом 6 подвижная втулка 3, которая вращается вместе с валом внутри неподвижной втулки 4.

Втулки изготавливают из чугуна, графита, капрона, текстолита или фторопласта-4, остальные детали из углеродистой стали для нейтральных сред или из коррозионно-стойких материалов для агрессивных сред. С точки зрения распределения нагрузок наиболее рациональны приводы с концевыми подшипниками, однако, во многих случаях из-за коррозионного или абразивного действия среды их нельзя устанавливать. Концевые подшипники в аппарате работают в очень тяжелых условиях: их невозможно смазывать, они плохо 1- стойка; 2- подшипник; 3- подвижная втулка; 4- неподвижная втулка; 5- штифты; 6,7- болты Рисунок 19 - Опоры концевые внутренние для вертикальных валов перемешивающих устройств.

доступны для осмотра и ремонта. Конструкция подшипника должна обеспечивать свободную циркуляцию жидкости через него. На рисунке 20а показан типовой концевой подшипник (подпятник). Подпятник, показанный на рисунке 20б применяется для футерованных аппаратов. Коническое основание этого подпятника обеспечивает ему высокую жесткость и предохраняет футеровку вблизи подпятника от разрушения.

    а)                                           б)

а) типовая конструкция; б) подпятник для футерованных аппаратов

Рисунок 20 - Концевые подшипники.

При работе мешалки без концевого подшипника возможно появление крутильных колебаний консольного вала мешалки, являющихся следствием динамических нагрузок на вал от перемешиваемой среды, условий закрепления вала в опорах, конструкции мешалки. При неправильном учете в процессе конструирования таких важных критериев надежности, как жесткость и виброустойчивость, эксплуатация аппаратов с мешалками встречает ряд затруднений. Если вал с мешалкой не отбалансирован и в его подшипниковых опорах имеется люфт d, то возможно отклонение нижнего конца вала на величину s. Схема отклонения вала с двумя подшипниковыми опорами изображена на рисунок 22.

1- редуктор; 2- продольно-разъемная муфта; 3- стойка привода; 4- уплотнение; 5- опора привода; 6- маслоуловитель; 7- вал; 8- концевой подшипник Рисунок 21 - Привод. Рисунок 22 - Схема колебаний вала.

Из подобия треугольников (рисунок 22) получаем соотношение:

, (1.37)

, (1.38)

Т.е. колебания вала зависит от величины люфта d и отношения L/ l.

Если люфт устранить полностью, то величину отношения L/ l можно ограничить. Для надежной работы консольного вала мешалки рекомендуется L/ l 4. Для уменьшения крутильных колебаний вала после крепления мешалки он должен быть статически отбалансирован. При опасности возникновения крутильных колебаний, которые ведут к нарушению работы сальника, или при больших значениях L/ l необходима установка концевого подшипника.

Крутильные колебания вызывают повышенный износ подшипников и сальника. Концевой подшипник устраняет крутильные колебания, улучшая работу сальника и подшипниковых опор. Хотя концевой подшипник работает в агрессивной среде, применение его для нормальной работы аппарата необходимо при большой длине или высокой частоте вращения вала.

Для обеспечения соосности обеих втулок (рисунок 19) может применяться концевой подшипник (рисунок 23), в котором обойма невращающейся втулки имеет шаровую поверхность, что дает возможность устанавливать ось этой втулки в нужном направлении.

1- вал; 2- вращающаяся втулка; 3- невращающаяся текстолитовая втулка; 4- обойма.

Рисунок 23 - Концевой подшипник с шаровой обоймой

Крепление мешалок. В простейших конструкциях лопасти приваривают непосредственно к валу. Однако, элементы крепятся на валу с помощью разъемных соединений. Обычно мешалка состоит из ступицы, к которой привариваются лопасти. Ступица крепится на валу с помощью шпонки и стопорных устройств, препятствующих осевому смещению. В случае установки мешалки в середине вала ее закрепляют стопорным винтом (рисунок 24а), при установке на конце вала – концевой гайкой (рисунок 24б) или с помощью двух полуколец, которые закладываются в кольцевую выточку на валу (рисунок 24.в).

              а                 б               в

а) стопорным винтом; б) концевой гайкой; в) полукольцами

Рисунок 24 - Способы крепления мешалок на валу.

При конструировании мешалок необходимо учитывать условия их монтажа. Мешалки небольших аппаратов (диаметром 1,2 м и менее) обычно собираются совместно с крышкой и вместе с ней устанавливаются в аппарат. Они должны иметь минимум разъемных соединений. Мешалки для крупногабаритных аппаратов целесообразно делать разъемными из частей таких размеров, которые можно пронести через лаз аппарата. Это дает возможность разбирать мешалку при ремонтных и монтажных работах, не снимая крышку и привод. В цельносварных аппаратах мешалка обязательна должна быть разборной.

Муфты служат для соединения вала привода с валом мешалки. Применяют в основном нормализованные муфты двух типов – продольно-разъемные и зубчатые.

1- корпус; 2- накидные фланцы; 3- разрезное кольцо; 4- пружины; 5- болты Рисунок 25 - Продольно- разъемная муфта. 1- обойма зубчатая; 2- втулка зубчатая; 3- крышка; 4- уплотнение; 5- масленка Рисунок 26 - Муфты зубчатые для соединения вертикальных валов приводов перемешивающих устройств.

Продольно-разъемные муфты применяют для жесткого соединения выходного вала редуктора (мотор-редуктор) с валом перемешивающего устройства с промежуточным валом при любом числе промежуточных опор. Муфта состоит (рисунок 25) из корпуса 1 (образующегося двумя половинами), накидных фланцев 2 и шпилек 5 с шайбами и гайками. Соединяемые концы валов имеют кольцевые проточки, на которые надето разрезное кольцо 3, половинки его скрепляются двумя пружинами 4. Сверху надеты на шпонке половины корпуса, после затяжки шпилек фланцев получается жесткое соосное соединение валов.

Зубчатые муфты применяют для соединения выходных валов мотор-редуктора и электродвигателя (гидромотора) с промежуточным валом при двух промежуточных опорах. Муфта состоит (рисунок 26) из зубчатой обоймы 1, укрепленной шпонкой на валу мотор-редуктора, и зубчатой втулки 2, сидящей на шпонке на промежуточном валу. Зубья втулки входят во впадины обоймы. Муфта передает крутящий момент, но не соединяет валы жестко по оси.

Вопросы для повторения

1. Назначение классификации химического оборудования.

2. Классификация химического оборудования.

3. Цель перемешивания.

4. Способы перемешивания.

5. Характеристики перемешивающих устройств положенные в основу их сравнительной оценки.

6. Основные части механического перемешивающего устройства.

7. Токи формируемые мешалками.

8. Конструкции мешалок в зависимости от устройства лопастей.

9. Лопастные мешалки, область применения.

10. Пропеллерные мешалки, область применения.

11. Турбинные мешалки, область применения.

12. Мешалки для вязких сред.

13. Специальные мешалки (барабанные, дисковые, вибрационные).

14. Мешалки для высоковязких сред.

15. Методика расчета перемешивающих устройств.

16. Расчет горизонтальной лопастной мешалки.

17. Расчет вертикальной лопастной мешалки.

18. Расчет пропеллерной мешалки.

19. Пневмоперемешивание.

20. Привод тихоходных мешалок.

21. Привод скоростных мешалок.

22. Стойки привода и концевые опоры вала мешалки.

23. Крепление мешалок к валу.

24. Муфты, соединяющие вал двигателя и мешалки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: