Назначение, методы и физические основы сушки

Сушильные установки

Целью процесса сушки является улучшение качественных показателей материала (снижение его объемной массы, повышение прочности) и, в связи с этим, увеличение возможностей его использования. В химической промышленности, где технологические процессы протекают в основном в жидкой фазе, конечные продукты имеют вид либо паст, либо зерен, крошки, пыли. Это обусловливает выбор соответствующих методов сушки.

Наиболее широко распространены в химической технологии конвективный и контактный методы сушки. При конвективной сушке тепло передается от теплоносителя к поверхности высушиваемого материала. В качестве теплоносителей используют воздух, инертные газы, дымовые газы. При контактной сушке тепло высушиваемому материалу передается через обогреваемую перегородку, соприкасающуюся с материалом. Несколько реже применяют радиационную сушку (инфракрасными лучами) и сушку электрическим током (высокой или промышленной частоты).

Методы сушки сублимацией со сбросом давления находят ограниченное применение в химической промышленности.

Конвективная сушка

Контактная сушка

Конвективная сушка

При конвективной сушке физическая сущность процесса сводится к удалению влаги из материала за счет разности парциальных давлений над материалом и в окружающей среде . Процесс сушки происходит при условии, что . При равенстве парциальных давлений наступает состояние равновесия и процесс сушки прекращается. При этом в материале установится влажность, называемая равновесной . Если сушить материал до влажности ниже равновесной, то неизбежно наступит состояние, при котором , и материал начнет увлажняться. Этот процесс называют сорбцией. Обычно сушку ведут до равновесной влажности.

При сушке удаление влаги с поверхности связано с диффузией влаги изнутри материала к поверхности. Эти два процесса должны находится в строгом соответствии, в противном случае возможно пересыхание, коробление поверхности материала и ухудшение его качества.

Таким образом, при конвективной сушке влага перемещается к поверхности за счет градиента влажности, градиент температуры несколько тормозит процесс. За счет разности температур на поверхности и внутри материала происходит движение влаги внутрь, в направлении снижения температуры.

Равновесная влажность, а следовательно протекание процесса сушки зависят от свойств высушиваемого материала, характера связи с ним влаги и параметров окружающей среды. Связь влаги с материалом может быть механической, физико-химической и химической.

Капиллярно связанная влага заполняет макро- и микрокапилляры. Она механически связанна с материалом и наиболее легко удаляется. Давление пара над поверхностью материала тем меньше, чем прочнее связь между водой и материалом. Наиболее прочна эта связь у гигроскопических веществ. Давление пара над ними наиболее отличается от давления насыщенных паров.

Адсорбционно связанная влага. Влажность обусловлена адсорбцией воды на наружной поверхности материала и на поверхности его пор. Осмотически связанная влага находится внутри структурного скелета материала и удерживается осмотическими силами. В этих двух случаях связь воды с материалом имеет физико-химическую природу.

Химически связанная влага. Под химически связанной влагой понимают воду гидроокиси, которая в результате реакции гидратации вошла в состав гидроокиси и соединений типа кристаллогидратов. Связь нарушается только в результате химического воздействия (иногда в результате прокаливания), и влага не удаляется при сушке.

Влажному материалу присущи все формы связи с водой, и очень трудно разграничить периоды сушки, соответствующие различным видам связи молекул воды с молекулами вещества. Поэтому экспериментальным путем строят изотермы сорбции при постоянной температуре. Изотермы сорбции позволяют установить связь между влажностью материала и относительной влажностью воздуха, а также определить равновесную влажность при сушке.

Контактная сушка

При контактной сушке термодиффузия и диффузия за счет разности концентрации влаги одинаково направлены, что способствует некоторой интенсификации процесса в первом периоде сушки. Во втором периоде разность температур уменьшается, поэтому несколько снижается интенсивность сушки.

При сушке инфракрасными лучами направления потока влаги (градиент влагосодержания D U) и потока тепла (градиент температуры D t) противоположны, что несколько снижает скорость сушки в первый момент. При постепенном прогреве тела влага перемещается внутрь слоя материала, влагосодержание отдаленных от поверхности слоев возрастает и возникает значительный перепад влагосодержания в теле. К концу периода облучения тело прогревается, D t уменьшается, влага движется к поверхности и начинает интенсивно испаряться. Интенсивность испарения повышается в десятки раз.

При сушке в поле токов высокой частоты материал помещается между двумя электродами, к которым по проводам подводится переменный ток

высокой частоты. Под действием электрического поля ионы и электроны в материале меняют направление движения синхронно с изменением знака заряда электродов, дипольные молекулы приобретают вращательное движение, а неполярные молекулы поляризуются в результате смещения их зарядов. Эти процессы, сопровождаемые трением, приводят к выделению тепла. Выделяющееся тепло нагревает материал, способствуя продвижению влаги к периферийным слоям и испарению ее с поверхности тела.

При сушке в поле токов высокой частоты материал изнутри имеет более высокую температуру, чем на поверхности; последнее интенсифицирует процесс сушки, т.к. градиенты диффузии и термодиффузии направлены в одну сторону.

Применение нагрева в поле токов высокой частоты создается возможностью обеспечить равномерность нагрева всего объема тела. Внутренние слои нагреваются сильнее периферийных, потому что поверхность материала охлаждается в результате поверхностного испарения влаги и потерь тепла в окружающую среду. Но при сушке в поле токов высокой частоты расход энергии относительно высок. Этот способ применяется лишь для изделий, особенно чувствительных к растрескиванию, перегреву и т.д.

Во влажном состоянии материал при давлении парогазовой смеси меньше 4.58 мм рт. Ст. Имеет температуру ниже 0 оС. При этом свободная влага замерзает и ее испарение происходит без плавления (сушка сублимацией). Удаление влаги в основном происходит путем углубления поверхности испарения внутрь тела. Перенос пара от поверхности испарения через слой тела происходит путем диффузии, т.к. при этом давлении радиус капилляров тела меньше средней длины свободного пробега молекул. Адсорбционно связанная влага находится в переохлажденном состоянии, она удаляется путем превращения жидкости в пар. В конце процесса сушки сублимация льда заканчивается и дальнейшая сушка происходит при температуре выше 0 оС. Следовательно, сублимационная сушка включает в себя сублимацию льда (сушка путем испарения льда), испарение переохлажденной жидкости внутри тела и испарение связанной жидкости при температуре выше 0 оС к концу процесса сушки.

Обычно под сублимацией понимают испарение твердого тела без плавления его, т.е. сублимация равнозначна возгонке. Применительно к процессу сушки сублимация влажного материала является процессом сушки его в замороженном состоянии (сублимация льда, находящегося внутри материала).

Таким образом, при сушке различных материалов следует выбирать метод сушки и конструкцию сушилки в соответствии с техническими условиями на процесс.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: