Ключевые вопросы
Лекция № 1. Типы операционных систем. Часть 2
Продолжительность: 2 часа (90 мин.)
· Цель и задачи курса.
· Основные понятия и определения: дисковые операционные системы (ДОС); ОС общего назначения; системы промежуточных типов, системы виртуальных машин; системы реального времени; системы кросс-разработки; системы промежуточных типов.
· Преемственность между разными ОС.
· История развития систем.
· Семейства операционных систем
· Открытые системы.
По тому, какие из вышеперечисленных функций реализованы и каким было уделено больше внимания, а каким меньше, системы можно разделить на несколько классов (рисунок 3.1).
Рисунок 3.1 – Классификация операционных систем
3.2.1 ДОС (Дисковые Операционные Системы) — до 15 мин.
Это системы, берущие на себя выполнение только первых четырех функций. Как правило, они представляют собой некий резидентный набор подпрограмм, не более того. ДОС загружает пользовательскую программу в память и передает ей управление, после чего программа делает с системой все, что ей заблагорассудится. При завершении программы считается хорошим тоном оставлять машину в таком состоянии, чтобы ДОС могла продолжить работу. Если же программа приводит машину в какое-то другое состояние, что ж, ДОС ничем ей в этом не может помешать.
Характерный пример — различные загрузочные мониторы для машин класса Spectrum. Как правило, такие системы работают одновременно только с одной программой.
Дисковая операционная система MS DOS для IBM PC-совместимых машин является прямым наследником одного из таких резидентных мониторов.
Существование систем этого класса обусловлено их простотой и тем, что они потребляют мало ресурсов. Для машин класса Spectrum это более чем критичные параметры. Еще одна причина, по которой такие системы могут использоваться даже на довольно мощных машинах — требование программной совместимости с ранними моделями того же семейства компьютеров.
3.2.2 ОС общего назначения — до 15 мин.
К этому классу относятся системы, берущие на себя выполнение всех вышеперечисленных функций. Разделение на ОС и ДОС идет, по-видимому, от систем IBM DOS/360 и OS/360 для больших компьютеров этой фирмы, клоны которых известны у нас в стране под названием ЕС ЭВМ серии 10ХХ.
Здесь под ОС мы будем подразумевать системы "общего назначения", т. е. системы, рассчитанные на интерактивную работу одного или нескольких пользователей в режиме разделения времени, при не очень жестких требованиях ко времени реакции системы на внешние события. Как правило, в таких системах уделяется большое внимание защите самой системы, программного обеспечения и пользовательских данных от ошибочных и злонамеренных программ и пользователей. Обычно подобные системы используют встроенные в архитектуру процессора средства защиты и виртуализации памяти. К этому классу относятся такие широко распространенные системы, как Windows 2000, системы семейства Unix.
3.2.3 Системы виртуальных машин — до 15 мин.
Такие системы стоят несколько особняком. Система виртуальных машин — это ОС, допускающая одновременную работу нескольких программ, но создающая при этом для каждой программы иллюзию того, что машина находится в полном ее распоряжении, как при работе под управлением ДОС. Зачастую, "программой" оказывается полноценная операционная система – примерами таких систем являются VMWare для машин с архитектурой х86 или VM для System/370 и ее потомков.
Виртуальные машины являются ценным средством при разработке и тестировании кросс-платформенных приложений. Реже они используются для отладки модулей ядра или самой операционной системы.
Такие системы отличаются высокими накладными расходами и сравнительно низкой надежностью, поэтому относительно редко находят промышленное применение.
Часто СВМ являются подсистемой ОС общего назначения: MS DOS и MS Windows-эмуляторы для UNIX и OS/2, подсистема WoW в Windows NT/2000/XP, сессия DOS в Windows З.х/95/98/МЕ, эмулятор RT-11 в VAX/VMS.
В системах виртуальных машин, как правило, приходится уделять много внимания эмуляции работы аппаратуры. Например, несколько программ могут начать программировать системный таймер. СВМ должна отследить такие попытки и создать для каждой из программ иллюзию, что она запрограммировала таймер именно так, как хотела. Разработка таких систем является сложным и часто неблагодарным делом. Архитектура таких систем сильно зависит от свойств виртуализуемой аппаратуры, поэтому мы почти не будем обсуждать этот класс ОС.
3.2.4 Системы реального времени — до 15 мин.
Это системы, предназначенные для облегчения разработки приложений реального времени — программ, управляющих некомпьютерным оборудованием с жесткими ограничениями по времени. Примером такого приложения может быть программа бортового компьютера fly-by-wire (дословно — "летящий по проволоке", т. е. использующий систему управления, в которой органы управления не имеют механической и гидравлической связи с рулевыми плоскостями) самолета, системы управления атомной электростанцией или промышленным оборудованием. Подобные системы должны поддерживать многопоточность, гарантированное время реакции на внешнее событие, простой доступ к таймеру и внешним устройствам.
Способность гарантировать время реакции является отличительным признаком систем реального времени. Важно учитывать различие между гарантированностью и просто высокой производительностью и низкими накладными расходами. Далеко не все алгоритмы и технические решения, даже и обеспечивающие отличное среднее время реакции, годятся для приложений и операционных систем РВ.
По другим признакам эти системы могут относиться как к классу ДОС (RT-11), так и к ОС (OS-9, QNX).
Качественная реализация современных мультимедиа приложений предъявляет к системе те же требования, что и промышленные задачи реального времени. В мультимедиа основной проблемой является синхронизация изображения на экране со звуком. Именно в таком порядке. Звук обычно генерируется внешним аппаратным устройством с собственным таймером, и изображение синхронизируется с ним. Человек способен заметить довольно малые временные неоднородности в звуковом потоке, а пропуск кадров в визуальном потоке не так заметен. Расхождение же звука и изображения фиксируется человеком уже при задержках около 30 мс. Поэтому системы высококачественного мультимедиа должны обеспечивать синхронизацию с такой же или более высокой точностью, что мало отличается от реального времени.
Так называемое "мягкое реальное время" (soft real time), предоставляемое современными Win32 платформами, не является реальным временем вообще, это что-то вроде "осетрины второй свежести". Система "мягкого РВ" обеспечивает не гарантированное, а всего лишь среднее время реакции. Для мультимедийных приложений и игр различие между "средним" и "гарантированным" не очень критично — ну дернется картинка, или поплывет звук. Но для промышленных приложений, где необходимо настоящее реальное время, это обычно неприемлемо.
3.2.5 Системы кросс-разработки — до 15 мин.
Это системы, предназначенные для разработки программ в двухмашинной конфигурации, когда редактирование, компиляция, а зачастую и отладка кода производятся на инструментальной машине (в англоязычной литературе ее часто называют host — дословно, "хозяин"), а потом скомпилированный код загружается в целевую систему. Чаще всего они используются для написания и отладки программ, позднее прошиваемых в ПЗУ. Примерами таких ОС являются системы программирования микроконтроллеров Intel, Atmel, PIC и др., системы Windows СЕ, Palm OS и т. д. Такие системы, как правило, включают в себя:
- набор компиляторов и ассемблеров, работающих на инструментальной машине с "нормальной" ОС;
- библиотеки, выполняющие большую часть функций ОС при работе программы (но не загрузку этой программы!);
- средства отладки.
Иногда встречаются кросс-системы, в которых компилятор работает не на инструментальной машине, а в целевой системе — так, например, устроена среда разработки для семейства микропроцессоров Transputer компании Inmos..
3.2.6 Системы промежуточных типов — до 15 мин.
Существуют системы, которые нельзя отнести ни к одному из перечисленных выше классов. Такова, например, система RT-11, которая, по сути своей, является ДОС, но позволяет одновременное исполнение нескольких программ с довольно богатыми средствами взаимодействия и синхронизации. Другим примером промежуточной системы являются MS Windows 3.x и Windows 95, которые, как ОС, используют аппаратные средства процессора для защиты и виртуализации памяти и даже могут обеспечивать некоторое подобие многозадачности, но не защищают себя и программы от ошибок других программ, подобно ДОС.
Некоторые системы реального времени, например QNX, могут использоваться как в качестве самостоятельной ОС, загружаемой с жесткого диска в оперативную память, так и, будучи прошиты в ПЗУ. Эти системы могут быть отнесены одновременно и к ОС общего назначения, и к системам кросс-разработки.
Таких примеров "гибридизации" можно привести множество.
3.2.7 Семейства операционных систем — до 15 мин.
Часто можно проследить преемственность между различными ОС, необязательно разработанными одной компанией. Отчасти такая преемственность обусловлена требованиями совместимости или хотя бы переносимости прикладного программного обеспечения, отчасти – заимствованием отдельных удачных концепций.
На основании такой преемственности можно выстроить "генеалогические деревья" операционных систем и — с той или иной обоснованностью — объединять их в семейства. Впрочем, в отличие от древа происхождения биологических видов, граф родства ОС не является деревом и нередко содержит циклы, поэтому стройную многоуровневую классификацию построить не всегда удается.
Тем не менее, можно выделить минимум три семейства ныне эксплуатирующихся ОС и еще несколько — вымерших или близких к тому. Три ныне процветающих семейства:
- ОС компьютеров фирмы IBM – OS/390, z/OS и IBM VM,
- Обширное, бурно развивающееся и имеющее трудно определимые границы семейство Unix:
• Unix System V Release 4.x: SunSoft Solaris, SCO UnixWare;
• Berkeley Software Distribution Unix: BSDI, FreeBSD;
• Linux,
- Семейство прямых и косвенных потомков Control Program/Monitor (СР/М) фирмы Digital Research.
Еще одно практически вымершее к настоящему моменту, но оставившее в наследство ряд важных и интересных концепций семейство – это операционные системы для мини- и микрокомпьютеров фирмы DEC: RT-11, RSX-11 и VAX/VMS.
Нужно отметить, впрочем, что современные версии Windows, несмотря на низкую надежность, сложность конфигурации и поддержки и ряд функциональных недостатков, вполне адекватны большинству задач конторской автоматизации. Проблемы возникают, когда задачи, стоящие перед организацией, выходят за пределы распечатки прайс-листов из MS Excel и набора писем в MS Word.
Основная проблема MS Windows состоит вовсе не в том, что это не "настоящая" операционная система, а в том, что она не обеспечивает путей плавного и безболезненного перехода к другим платформам, даже если возникнет необходимость такого перехода. Строго говоря, тот же недостаток свойственен многим другим закрытым (closed) платформам, поставляемым одной фирмой и использующим нестандартные "фирменные" интерфейсы. Пока "закрытое" решение соответствует вашим требованиям, все хорошо, но когда вы выходите за пределы технологических возможностей данного решения, вы оказываетесь в тупике.
3.2.8 Открытые системы — до 15 мин.
Альтернативой закрытым решениям является концепция открытых систем. Идея открытых систем исходит из того, что для разных задач необходимы разные системы — как специализированные, так и системы общего назначения, просто по-разному настроенные и сбалансированные. Сложность состоит в том, чтобы обеспечить:
- взаимодействие разнородных систем в гетерогенной сети,
- обмен данными между различными приложениями на разных платформах,
- переносимость прикладного ПО с одной платформы на другую, хотя бы путем перекомпиляции исходных текстов,
- по возможности однородный пользовательский интерфейс.
Эти задачи решаются при помощи открытых стандартов – стандартных сетевых протоколов, стандартных форматов данных, стандартизации программных интерфейсов – API (Application Program Interface, интерфейс прикладных программ) и, наконец, стандартизации пользовательского интерфейса.
Для того чтобы как-то обеспечить переносимость программ между системами различных типов, принимались различные стандарты интерфейса между пользовательской (обычно говорят — прикладной, но это не всегда правильно) программой и ОС. Одним из первых таких стандартов был стандарт библиотек ANSI С. Он основан на системных вызовах ОС Unix, но функции MS DOS для работы с файлами (использующие file handle) тоже достаточно близки к этому стандарту.
Позднее делалось еще несколько попыток стандартизировать интерфейс системных вызовов. Одной из относительно удачных попыток такого рода был POSIX (Portable Operating System Interface [based on] uniX – переносимый интерфейс операционной системы, основанный на Unix), который в той или иной форме поддерживается всеми системами семейства Unix и некоторыми ОС, не входящими в это семейство, например Windows NT. Наибольший же успех имела деятельность консорциума Х/Open, который в 1998 году сертифицировал операционную систему OS/390 фирмы IBM как соответствующую спецификациям Unix/95.