Система накачки

Для создания инверсной населённости среды лазера используются различные механизмы. В твердотельных лазерах она осуществляется за счёт облучения мощными газоразрядными лампами-вспышками, фокусированным солнечным излучением (так называемая оптическая накачка) и излучением других лазеров. При этом возможна работа только в импульсном режиме, поскольку требуются очень большие плотности энергии накачки, вызывающие при длительном воздействии сильный разогрев и разрушение стержня рабочего вещества. В газовых и жидкостных лазерах используется накачка электрическим разрядом. Такие лазеры работают в непрерывном режиме. Накачка химических лазеров происходит посредством протекания в их активной среде химических реакций. При этом инверсия населённостей возникает либо непосредственно у продуктов реакции, либо у специально введённых примесей с подходящей структурой энергетических уровней. Накачка полупроводниковых лазеров происходит под действием сильного прямого тока через p-n переход, а также пучком электронов. Существуют и другие методы накачки (газодинамические, заключающиеся в резком охлаждении предварительно нагретых газов; фотодиссоциация, частный случай химической накачки и др.).

а — трёхуровневая и б — четырёхуровневая схемы накачки активной среды лазера.

Классическая трёхуровневая система накачки рабочей среды используется, например, в рубиновом лазере. Рубин представляет собой кристалл корунда Al2O3, легированный небольшим количеством ионов хрома Cr3+, которые и являются источником лазерного излучения. Из-за влияния электрического поля кристаллической решётки корунда внешний энергетический уровень хрома E2 расщеплён. Именно это делает возможным использование немонохроматического излучения в качестве накачки. При этом атом переходит из основного состояния с энергией E0 в возбуждённое с энергией около E2. В этом состоянии атом может находиться сравнительно недолго (порядка 10−8 с), почти сразу происходит безызлучательный переход на уровень E1, на котором атом может находиться значительно дольше (до 10−3 с), это так называемый метастабильный уровень. Возникает возможность осуществления индуцированного излучения под воздействием других случайных фотонов. Как только атомов, находящихся в метастабильном состоянии становится больше, чем в основном, начинается процесс генерации.

Следует отметить, что создать инверсию населённостей атомов хрома Cr с помощью накачки непосредственно с уровня E0 на уровень E1 нельзя. Это связано с тем, что если поглощение и вынужденное излучение происходят между двумя уровнями, то оба эти процесса протекают с одинаковой скоростью. Поэтому в данном случае накачка может лишь уравнять населённости двух уровней, чего недостаточно для возникновения генерации.

В некоторых лазерах, например в неодимовом генерация излучения происходит на ионах неодима Nd3+, используется четырёхуровневая схема накачки. Здесь между метастабильным E2 и основным уровнем E0 имеется промежуточный — рабочий уровень E1. Вынужденное излучение происходит при переходе атома между уровнями E2 и E1. Преимущество этой схемы заключается в том, что в данном случае легко выполнить условие инверсной населенности, так как время жизни верхнего рабочего уровня (E2) на несколько порядков больше времени жизни нижнего уровня (E1). Это значительно снижает требования к источнику накачки. Кроме того, подобная схема позволяет создавать мощные лазеры, работающие в непрерывном режиме, что очень важно для некоторых применений. Однако подобные лазеры обладают существенным недостатком в виде низкого квантового КПД, которое определяется как отношение энергии излученного фотона к энергии поглощенного фотона накачки (ηквантовое = hνизлучения/hνнакачки)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: