Оборудование для рентгенорадиометрической сортировки

Рентгеновская флуоресценция

Когда атомы образца облучаются фотонами с высокой энергией – возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию, когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона – этот феномен и называется "флуоресценция''.

Рисунок 24 – Электронные орбитали.

Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением. Различные электронные орбитали (Рисунок 24) обозначаются K,L,M и.т.д., где К - орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона. Наиболее интенсивные линии характеристического спектра – Ka1,Ka2, Kb1 и Kb2 соотношение их интенсивностей – 100:50:20:4. Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/λ, где E1 и E2 - энергии орбиталей, между которыми произошел переход электрона, h – постоянная Планка, с - скорость света, λ - длина волны испускаемого (вторичного) фотона. Таким образом, длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца.

Рисунок 25 – Схема рентгенорадиометрического сепаратора

Подлежащий обогащению машинный (сортируемый) класс подается на машину сортировочную сепаратора СРФ-4 (Рисунок 25) (в приемный бункер). Питающий вибропитатель машины сортировочной обеспечивает дозированную непрерывную разгрузку руды из приемного бункера и подачу ее на раскладчик. Раскладчик имеет лотковую конструкцию и формирует 4 потока (ручья) руды с покусковой подачей ее в зону измерения и отбора в режиме свободного падения. Каждый кусок подвергается сканирующему рентгеновскому облучению за счет естественного движения куска в узкощелевой полосе облучения. Спектр вторичного (флуоресцентного и отраженного) излучения от куска подвергается автоматической компьютерной обработке, определению аналитического параметра разделительного признака и сравнению полученной величины с заданным пороговым значением. Измерительно - управляющая система сепаратора (на основе промышленных компьютеров) вырабатывает сигнал управления на срабатывание исполнительного механизма на кусок с повышенным или пониженным содержанием ценных компонентов или элементов-примесей. Исполнительный механизм электромагнитного шиберного типа срабатывает, изменяя траекторию падения куска, который направляется в течку отбираемого продукта. Остальные куски падают без отклонения траектории в другую течку, например, «хвостов» (условно).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: