Законы проведения возбуждения в нервных волокнах и нервах

Классификация нервных волокон по Эрлангеру-Гассеру

В 1939 г. американские[Мф54] физиологи Джозеф Эрлангер [Б55] и Герберт С.Гассер [Б56] [Б57] зарегистрировали токи действия от целого нервного ствола седалищного нерва лягушки на разных расстояниях от стимулирующего электрода (рис. 210041905).[Б58]

Было установлено, что регистрируемый суммарный потенциал имеет ряд пиков, которые были обозначены буквами латинского алфавита A, B, C (рис., I). Пик A имел дополнительные пики, помеченные греческими буквами α, β, γ, δ (рис., II). [Б59] В 1944 г. работа Дж.Эрлангера и Г.С.Гассера была оценена присуждением Нобелевской премии[Б60].

Нервы у позвоночных состоят из трех основных групп волокон (А, В и С), различающихся по степени миелизации, диаметру волокна, длительности пика ПД (скорости развития ПД), электровозбудимости, его компенсации и скорости проведения (все эти показатели в ряду А — В — С падают).

Группа А включает наиболее толстые хорошо миелинизированные моторные и чувст­вительные волокна; группа В — слабомиелинизированные, преганглионарные волокна автономной нервной системы; группа С - немиелинизированные, постганглионарные (симпатические) волокна.

В группе А в ряду a, b, g, d названные показатели тоже падают. Соотношения свойств этих групп волокон демонстрируются в табл..

Необходимо заметить, что указанные соотношения порогов электрического раздражения групп волокон не отражают точного соотношения электровозбудимости их мембран. Относительно высокие пороги тонких волокон при их раздражении в нервном стволе определяются в основном тем обстоятельством, что тонкие волокна по сравнению с толстыми обладают более высоким входным сопротивлением. В них входит такая малая часть раздражающего тока, что при пороговой силе для Аa -волокон она совершенно недостаточна для создания на мембране более тонких волокон сколько-нибудь существенной деполяризации. По этой же причине (высокое RI) отводимые от ствола (внеклеточно) ПД тонких волокон предстают значительно меньшими, чем ПД толстых волокон.

Рис.. Составные части потенциала действия смешанного нерва.

I – при относительно медленной скорости записи.

II – при относительно высокой скорости записи.

Объяснение в тексте. По оси абсцисс – время, по оси ординат амплитуда составного потенциала в мВ.

Суммарная электрическая активность нерва создается его волок­нами, каждое из которых генерирует свой стандартный по амплитуде и временным параметрам ПД, распространяющийся в обе стороны от точки, к которой приложено раздражение. Суммарный электрический сигнал нерва зависит от числа активных волокон, синхронности их активности, способа отведения и других обстоятельств.

Рассмотрим случай так называемого однофазного отведения, при котором один отводящий электрод (активный) расположен на нор­мальном участке ствола, а другой (индифферентный) — на поврежден­ном, где волокна деполяризованы полностью (рис.1.19). Пусть приме­няют искусственное раздражение и раздражающий электрод (катод) находится достаточно близко (l= 3 мм) от активного отводящего электрода, а нерв помещен в непроводящую среду (масло или воздух). Здесь сильное одиночное раздражение приводит к синхронному возбуждению всех волокон, при этом активный отводящий электрод регистрирует суммарный ПД нерва, по форме приближающийся к ПД отдельного A(альфа)‑волокна, но немного более затянутый во времени. Этот ПД нерва, однако, не подчиняется правилу «все или ничего». При пороговом раздражении он ничтожно мал, с увеличением силы стимулов постепенно растет, достигая максимума, равного при обычных условиях 5—10 мВ, а в условиях сахарозного мостика — 50—100 мВ.

При дальнейшем увеличении силы стимула этот ПД несколько удлиняется во времени. Все изменения амплитуды и длительности пика ПД нерва при усилении стимула определяются ростом числа активных волокон, подключением к низкопороговым и быстрым А(альфа)-волокнам более высокопороговых медленных бета-, гамма-, дельта-волокон группы А, затем В- и, наконец, С-группы.

Группы воло­кон (по Эрлангеру и Гассеру) Диаметр, мкм Скорость проведения, м/с
Aa 13 - 22 70 - 120
Ab 8 -13 40 - 70
Ag 4 - 8 15 – 40
Ad 1 – 4 5 – 15
B 1 - 3 3 – 14
C 0,5 – 1,0 0,5 - 2



Таблица. Классификация нервных волокон по Дж.Эрлангеру и Х.Гассеру

Группы воло­кон (по Эрлангеру и Гассеру) Диаметр, мкм Пороги электрического раздраженния (от­носительно Aa) Длительность пика ПД1 Отрицательный следовой потенциал (ОСП) Положительный следовой потенциал [Б61] Скорость проведения, м/с
Длительность, мс Амплитуда СП, % к амплитуде ПД Длительность, мс Амплитуда СП, % к амплитуде ПД
Aa 13 - 22 1,0 0,4 15 – 20   40 - 60 0,2 70 - 120
Ab 8 -13             40 - 70
Ag 4 - 8             15 – 40
Ad 1 – 4             5 – 15
B 1 - 3 11,7 1,2 ОСП нет   100 – 300   3 – 14
C 0,5 – 1,0 100,0 2,0 50 – 60   300 - 1000   0,5 - 2

1Приблизительно ту же величину имеют и абсолютные рефрактерные фазы


Основные свойства автоволн, касающиеся их распространения, распространяются и на потенциалы действия нервных волокон:

1. распространяется без затухания как по длине волокна, так и при его разветвлении (рис. 709170042).

2. не интерферируют (рис. 709170043).

3. не отражаются от препят­ствий (рис. 709170044).

4. направление распространения определяется зонами рефрактерности и покоя, обеспечивается двустороннее проведение возбуждения (рис. 709170045, 709170046).

Рис. 709170042. Распространение ПД при разветвлении нервных волокон. Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

Рис. 709170043. Распространение ПД при схождении нервных волокон. Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

Рис. 709170044. ПД не отражаются от препят­ствий Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

ПД проходит равные расстояния (L) от места действия стимула за одно и то же время (t) и сохраняет амплитуду при прочих равных условиях.

Рис. 709170045. Двустороннее проведение по нервным волокнам. L – расстояние от места действия стимула, t – время проведения ПД от места действия стимула до места расположения регистрирующих электродов, A – амплитуда ПД.

Обычно подчёркивается условие сохранения анатомической и физиологической непрерывности волокна

Анатомическая и физиологическая непрерывность волокна

Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому как перерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводимость. Непроводимость наблюдается также при нарушении физиологической целост­ности волокна блокада натриевых каналов возбудимой мембраны тетродотоксином или местными aнестетиками, резкое охлаждение и т.п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна К+, накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспали­тельном отеке тканей могут сопровождаться частичным или полным нарушением функ­ции проведения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: