Критерий минимаксного риска Сэвиджа
Максиминный критерий Вальда
Правило выбора решения в соответствии с максиминным критерием (ММ-критерием) можно интерпретировать следующим образом:
Платёжная матрица дополняется столбцом, каждый элемент которого представляет собой минимальное значение выигрыша в соответствующей стратегии ЛПР:
Wi = minj a ij
Оптимальной по данному критерию считается та стратегия ЛПР, при выборе которой минимальное значение выигрыша максимально:
W = max Wi
Выбранная таким образом стратегия полностью исключает риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Это свойство позволяет считать ММ-критерий одним из фундаментальных.
Применение ММ-критерия оправдано, если ситуация, в которой принимается решение следующая:
1. О возможности появления состояний окружающей среды ничего не известно;
2. Решение реализуется только один раз;
3. Необходимо исключить какой бы то ни было риск.
Величина (a max j – a ij), где a max j - максимальный элемент j – го столбца, может быть интерпретирована как дополнительный выигрыш, получаемый в условиях состояния окружающей среды Sj при выборе ЛПР наиболее выгодной стратегии, по сравнению с выигрышем, получаемым ЛПР при выборе в тех же условиях любой другой стратегии. Эта же разность может быть интерпретирована как величина возможного проигрыша при выборе ЛПР I – й стратегии по сравнению с наиболее выгодной стратегией. На основе данной интерпретации разности выигрышей производится определение наиболее выгодной стратегии по критерию минимаксного риска.
|
|
|
Для определения оптимальной стратегии по данному критерию на основе платёжной матрицы рассчитывается матрица рисков, каждый коэффициент которой (rij) определяется по формуле:
rij = a max j – a ij
Матрица рисков дополняется столбцом, содержащим максимальные значения коэффициентов rij по каждой из стратегий ЛПР:
Ri = maxj rij
Оптимальной по данному критерию считается та стратегия, в которой значение Ri минимально:
W = min Ri
Ситуация, в которой оправдано применение критерия Сэвиджа, аналогична ситуации ММ-критерия, однако наиболее существенным в данном случае является учёт степени воздействия фактора риска на величину выигрыша.
В практике принятия решений ЛПР руководствуется не только критериями, связанными с крайним пессимизмом или учётом максимального риска. Стараясь занять наиболее уравновешенную позицию, ЛПР может ввести оценочный коэффициент, называемый коэффициентом пессимизма, который находится в интервале [0, 1] и отражает ситуацию, промежуточную между точкой зрения крайнего оптимизма и крайнего пессимизма. Данный коэффициент определяется на основе статистических исследований результатов принятия решений или личного опыта принятия решений в схожих ситуациях.
|
|
|
Платёжная матрица дополняется столбцом, коэффициенты которого рассчитываются по формуле:
Wi = C×minj a ij + (1-C) ×maxj a ij
Где C – коэффициент пессимизма.
Оптимальной по данному критерию считается стратегия, в которой значение Wi максимально:
W = max Wi
При С =1 критерий Гурвица превращается в ММ-критерий. При С = 0 он превращается в критерий “азартного игрока”, делающего ставку на то, что «выпадет» наилучший случай.
Критерий Гурвица применяется в ситуации, когда:
1. Информация о состояниях окружающей среды отсутствует или недостоверна;
2. Необходимо считаться с появлением каждого состояния окружающей среды;
3. Реализуется только малое количество решений;
4. Допускается некоторый риск.






