Особенности действия высокоинтенсивного лазерного УФ-излучения на ДНК (двухквантовые реакции)

До создания лазерных источников УФ-излучения классическая УФ - фотобиология рассматривала в основном процессы, линейно зависящие от интенсивности УФ-света или исследовались биологические эффекты одноквантовых фотохимических реакций. Лазерное излучение обладает такими замечательными свойствами, как пространственная к:огерентность, монохроматичность, высокая интенсивность и концентрация энергии в коротком импульсе наносекундной или пикосекундной длительности. Большая мощность и ультракороткое время действия делают лазерное УФ-излучение потенциально новым инструментом для исследования процессов двухквантового возбуждения электронных уровней оснований ДНК и особенностей протекающих при этом фотохимических реакций, а также их проявления на биологическом уровне.

Экспериментальные исследования, в которых водные растворы азотистых осно­ваний облучали пикосекундными или наносекундными импульсами УФ-излученш (266 нм), показали, что при интенсивностях выше 1010 Вт/м2 происходят необра­тимые фотохимические изменения молекул, причем образующиеся продукты каче­ственно отличаются от фотопродуктов одноквантовых реакций, таких, как пиримидиновые димеры и гидраты. Причем степень деградации оснований квадратично зависит от интенсивности излучения, что свидетельствует о двухквантовом механизме лазер-индуцированных фотохимических превращений.

Лазер-индуцированное двухквантовое возбуждение оснований в составе ДНК приводит к таким ее фотохимическим превращениям, которые не наблюдают­ся (либо идут с очень низким квантовым выходом) в случае действии низкоинтенсивного УФ-света. Наряду с деградацией оснований в ДНК выявлены разрывы N-гликозидной связи с отрывом тимина от цепи ДНК (при низко интенсивном УФ-облучении такой процесс не происходит) и одноцепочечные разрывы. Показано, что квантовый выход однонитевых разрывов при переходе от низкоинтенсивного УФ-облучения (1 Вт/м2) к высокоинтенсивному пикосекундному УФ-облучению (4 • 1013 Вт/м2) возрастает от (1¸2) • 10-6 до 8 • 10-5.

Вклад двухквантовых фотоповреждений ДНК по сравнению с одноквантовымг (пиримидиновые димеры) в лазерную УФ-инактивацию плазмид, бактериофагов и микроорганизмов значительно выше. Об этом, в частности, свидетельствуют экспе­рименты по изучению фотореактивации УФ-облученных биологических объектов Они показали, что с ростом интенсивности лазерного УФ-излучения (266 нм) степень фотореактивации резко уменьшается (СЛАЙД 8).

Поскольку при фотореактивации ликвидируются летальные фотопродукты только одного типа — циклобутановые пиримидиновые димеры ДНК, то установленный факт свидетельствует ос уменьшении вклада димеров (и соответственно увеличении вклада двухквантовых фотоповреждений ДНК) в лазерную УФ-инактивацию.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: