Нелинейность функции преобразования
Старение” и нестабильность параметров СИ
Причины мультипликативных погрешностей СИ
К причинам возникновения аддитивных погрешностей СИ можно отнести:
- наличие факторов влияния со стороны окружающей среды;
- “старение” и нестабильность параметров ИП.
- нелинейность функции преобразования, связанная с конструкцией прибора.
- токи утечки, обусловленные конечной проводимостью сопротивления изоляции.
Первая причина была рассмотрена выше. Здесь рассмотрим остальные причины.
“Старение ” элементов прибора сводиться к изменению их химических свойств и структуры, которые обусловлены химическими реакциями, протекающими под действием окружающей среды, наличием электрического тока; структурными изменениями, связанными с релаксацией напряжений и диффузией неоднородностей, возникших при изготовлении элементов.
Пример 1. Заготовки для деталей, выполняемых с высокой точностью и стабильностью параметров, выдерживают несколько лет. Также используются и методы искусственного “старения” элементов, например, выдержка деталей при повышенной температуре и влажности.
Пример 2. Если груз подвесить на пружине, то с течением времени длина пружины будет, хотя и медленно, увеличиваться. Это явление называют упругим последействием.
Точно так же, если пружину растянуть на некоторую фиксированную длину и закрепить, то сила упругости, действующая на крепление, будет со временем уменьшаться. Это явление называют релаксацией.
При рассмотрении причин нелинейности функции преобразования СИ необходимо различать геометрическую и физическую нелинейности элементов приборов или прибора в целом.
Пример 1. Зависимость периода колебаний математического маятника от амплитуды колебаний по формуле
– типичное проявление геометрической нелинейности, которая приводит к нелинейности дифференциального уравнения
колебаний маятника. Эта нелинейность обусловлена зависимостью момента силы тяжести, действующей на маятник, от угла отклонения массы от положения равновесия.
Пример 2. Тело, прижимается к горизонтальной плоскости пружиной. Найдем зависимость проекции F x(x) силы упругости от перемещения х.
Пусть трение отсутствует и пружина - линейная, т.е.
, где D l – деформация пружины.
Считаем, что при x =0, F упр= F 0, т.е. в положении равновесия пружина натянута. Тогда
, причем
.
Следовательно,
. Учитывая,
, выражая cos a через
, получим
.
Рассмотрим несколько частных случаев (приближений):
Первый случай. Пусть
тогда, пренебрегая
, получим 
Второй случай (учет слагаемых
).Воспользуемся формулой
, при
. Тогда
.
Третий случай: начальное натяжение пружины отсутствует, т.е. F 0=0. Тогда из предыдущей формулы найдем
.
Из полученных формул видно, что результат существенно зависит от используемого приближения, т.е. математической модели. При этом, несмотря на то, что пружина была выбрана линейной, т.е.
, зависимость силы от перемещения может быть существенно нелинейной.






