double arrow

Нойс шейпинг


В результате оцифровки входного аналогового сигнала к нему добавляется шум квантования. Его спектр равномерен и простирается начиная от 0 Гц и до частоты Найквиста (половины частоты дискретизации). Равномерность по частоте и отсутствие взаимосвязи (некоррелированность) шума с сигналом достигается применением дизеринга и правилом квантования, при котором округление амплитуды происходит к ближайшей опорной величине.

Применение более сложных правил округления позволяет получить другие (неравномерные) спектральные характеристики шумов округления при сохранении полной мощности шумов неизменной. Учитывая, что человеческий слуховой аппарат имеет спад чувствительности на высоких и на очень низких частотах, возможно, используя специальные правила округления при квантовании, получить спектр шумов округления, большей частью сосредоточенный в области частот, которые наименее заметны на слух (выше 20 кГц). Частота дискретизации для ЦАП с 256-кратным превышением частоты около 11,2 МГц, и следовательно, мы имеем возможность переместить весь шум квантования в область частот, практически неслышимую человеческим ухом (от 20 кГц до 5,6 МГц). Таким образом, можно значительно улучшить отношение сигнал/шум в диапазоне слышимых частот в цифровом сигнале не увеличивая количество бит на один отсчет.




Применение нойс шейпинга (noise shaping) возможно и без перемещения шумов в полностью неслышимую высокочастотную область. Для этого при переходе от 20..24-битного исходного сигнала к 16-битному формируется спектр шумов квантования, имеющий форму, обратную кривой чувствительности слухового аппарата человека. То есть там, где наш слух наиболее чувствителен к шумам, будет минимум на кривой спектра мощности шумов и наоборот, там где наш слух менее чувствителен к шуму будет сосредоточен максимум шумов. Таким образом, особенно раздражающее слух шипение в области 3-4 кГц становится более мягким и незаметным, а "грязь" при небольших уровнях сигнала становится менее очевидной.

В мастеринге, например, целесообразно звуковой материал оцифровать на повышенной частоте дискретизации (скажем 96 кГц, если ваш АЦП это позволяет) и с высокой разрядностью (20..24-бит), а преобразование звука в 16-битный с частотой 44,1 кГц (необходимое для СD) произвести в самом конце работы с помощью специального программного обеспечения или аппаратных устройств, использующих компрессию, дизеринг, нойс шейпинг и другие алгоритмы обработки. Таким образом, можно достичь субъективно лучшего отношения сигнал/шум на СD, хотя объективные измерения могут показать незначительное ухудшение этого параметра за счет увеличения мощности высокочастотных шумов.

Вообще же стоит относиться критически к рекламным заявлениям фирм о "колоссальном" и "драматическом" улучшении звука после дизеринга, нойс шейпинга и т. д. Очевидно, что панацеи не существует и именно поэтому безработица инженерам по звуку пока не грозит.







Сейчас читают про: